Base-free production of H2 by dehydrogenation of formic acid using an iridium-bisMETAMORPhos complex.

Erase the base: An iridium complex based on a cooperative ligand that functions as an internal base is reported. This complex can rapidly and cleanly dehydrogenate formic acid in absence of external base, a reaction that is required if formic acid is to be exploited as an energy carrier (see scheme).

[1]  T. Zell,et al.  Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions. , 2013, Chemistry.

[2]  R. Rodríguez‐Lugo,et al.  A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. , 2013, Nature chemistry.

[3]  M. Beller,et al.  Towards the development of a hydrogen battery , 2012 .

[4]  G. Laurenczy,et al.  Formic acid as a hydrogen source – recent developments and future trends , 2012 .

[5]  A. Riera,et al.  P-stereogenic secondary iminophosphorane ligands and their rhodium(I) complexes: taking advantage of NH/PH tautomerism. , 2012, Angewandte Chemie.

[6]  S. Fukuzumi,et al.  Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure , 2012 .

[7]  Jarl Ivar van der Vlugt,et al.  Cooperative catalysis with first-row late transition metals , 2012 .

[8]  Etsuko Fujita,et al.  Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures , 2012, Nature Chemistry.

[9]  A. Spek,et al.  Supramolecular Hydrogen-Bonding Tautomeric Sulfonamido–Phosphinamides: A Perfect P-Chirogenic Memory , 2012 .

[10]  A. Spek,et al.  SIAPhos: Phosphorylated Sulfonimidamides and their Use in Iridium-Catalyzed Asymmetric Hydrogenations of Sterically Hindered Cyclic Enamides , 2012 .

[11]  R. Ludwig,et al.  Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst , 2011, Science.

[12]  B. Rieger,et al.  Umwandlung von Kohlendioxid mit Übergangsmetall‐Homogenkatalysatoren: eine molekulare Lösung für ein globales Problem? , 2011 .

[13]  B. Rieger,et al.  Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? , 2011, Angewandte Chemie.

[14]  T. Akita,et al.  Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. , 2011, Journal of the American Chemical Society.

[15]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[16]  G. Huber,et al.  Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries , 2011 .

[17]  T. Hirose,et al.  Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. , 2011, ChemSusChem.

[18]  T. Ikariya,et al.  β-Protic pyrazole and N-heterocyclic carbene complexes: synthesis, properties, and metal-ligand cooperative bifunctional catalysis. , 2011, Chemistry.

[19]  Heiji Enomoto,et al.  Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions , 2011 .

[20]  T. Schmidt,et al.  Carbon Dioxide and Formic Acid - The couple for an environmental-friendly hydrogen storage? , 2010 .

[21]  Mårten S. G. Ahlquist,et al.  Iridium catalyzed hydrogenation of CO2 under basic conditions—Mechanistic insight from theory ☆ , 2010 .

[22]  Takeshi Kobayashi,et al.  Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water. , 2010, Journal of the American Chemical Society.

[23]  M. Wills,et al.  Hydrogen generation from formic acid and alcohols using homogeneous catalysts. , 2010, Chemical Society reviews.

[24]  Y. Himeda Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine , 2009 .

[25]  Joost N. H. Reek,et al.  Neutrale dreizähnige PNP‐Liganden und deren Hybrid‐Analoga: vielseitige Liganden für die kooperative homogene Katalyse , 2009 .

[26]  J. Reek,et al.  Neutral tridentate PNP ligands and their hybrid analogues: versatile non-innocent scaffolds for homogeneous catalysis. , 2009, Angewandte Chemie.

[27]  M. Yamashita,et al.  Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. , 2009, Journal of the American Chemical Society.

[28]  A. Spek,et al.  Sulfonamido-phosphoramidite ligands in cooperative dinuclear hydrogenation catalysis. , 2009, Journal of the American Chemical Society.

[29]  Ning Yan,et al.  Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. , 2009, Chemistry.

[30]  S. Fukuzumi,et al.  Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution. , 2008, ChemSusChem.

[31]  F. Joó Breakthroughs in hydrogen storage--formic Acid as a sustainable storage material for hydrogen. , 2008, ChemSusChem.

[32]  S. Enthaler,et al.  Carbon dioxide--the hydrogen-storage material of the future? , 2008, ChemSusChem.

[33]  M. Beller,et al.  Hydrogen generation at ambient conditions: application in fuel cells. , 2008, ChemSusChem.

[34]  Fangming Jin,et al.  Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. , 2008 .

[35]  Björn Loges,et al.  Kontrollierte Wasserstofferzeugung aus Ameisensäure‐Amin‐Addukten bei Raumtemperatur und direkte Nutzung in H2/O2‐Brennstoffzellen , 2008 .

[36]  Paul J Dyson,et al.  A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. , 2008, Angewandte Chemie.

[37]  Matthias Beller,et al.  Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. , 2008, Angewandte Chemie.

[38]  J. Reek,et al.  METAMORPhos: adaptive supramolecular ligands and their mechanistic consequences for asymmetric hydrogenation. , 2008, Angewandte Chemie.

[39]  G. Fabrizi,et al.  The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes. , 2006, Journal of the American Chemical Society.

[40]  R. Puddephatt,et al.  The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst , 2000 .

[41]  R. Puddephatt,et al.  An efficient binuclear catalyst for decomposition of formic acid , 1998 .