Axisymmetric dynamic instability of rotating polar orthotropic sandwich annular plates with a constrained damping layer

Abstract A sandwich annular plate built with two constrained layers of polar orthotropic material and a viscoelastic core layer is subjected to a periodic uniform radial stress while rotating. The axisymmetric dynamic instability of such a rotating sandwich plate is analyzed using finite elements. By employing a discrete layer axisymmetric annular element and Hamilton’s principle, the finite element equations of motion that facilitate considerations of transverse shear effect shear effect are derived. The viscoelastic material in the core layer is assumed to be incompressible, and its extensional and shear moduli are described by complex quantities. The regions of dynamic instability are determined by Bolotin’s method. Numerical results show that the constrained viscoelastic core layer tends to stabilize the sandwich annular plate system. In addition, the widths of instability regions decrease as the rotation speed increases.

[1]  Lien-Wen Chen,et al.  Vibration and damping analysis of annular plates with constrained damping layer treatments , 2003 .

[2]  Andris Chate,et al.  Finite element analysis of damping the vibrations of laminated composites , 1993 .

[3]  Per G. Reinhall,et al.  Thickness deformation of constrained layer damping : An experimental and theoretical evaluation , 2001 .

[4]  J. Dugundji,et al.  Resonance oscillations in mechanical systems , 1976 .

[5]  Ying-Te Lee,et al.  Axisymmetric vibration analysis of rotating annular plates by a 3D finite element , 2000 .

[6]  R. M. Evan-Iwanowski,et al.  Parametric resonance of viscoelastic columns , 1969 .

[7]  G. Cederbaum,et al.  Stability Properties of a Viscoelastic Column Under a Periodic Force , 1992 .

[8]  M. D. Olson,et al.  Finite element analysis of rotating disks , 1981 .

[9]  C. C. Lin,et al.  Free Vibration of Polar Orthotropic Laminated Circular and Annular Plates , 1998 .

[10]  Hans-Peter Mlejnek,et al.  Computational prediction and redesign for viscoelastically damped structures , 1995 .

[11]  Gen Yamada,et al.  Natural Frequencies of Mindlin Circular Plates , 1980 .

[12]  J.-F. He,et al.  Analysis of flexural vibration of viscoelastically damped sandwich plates , 1988 .

[13]  Shan Yu,et al.  VIBRATION ATTENUATION VIA CONSTRAINED LAYER DAMPING AND DASHPOT ON A SPRING–MASS–PLATE SYSTEM , 2003 .

[14]  Robert Plunkett,et al.  Dynamic Mechanical Behavior of Fiber-Reinforced Composites: Measurement and Analysis , 1976 .

[15]  K. Stevens On the parametric excitation of a viscoelastic column. , 1966 .

[16]  Lien-Wen Chen,et al.  Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer , 2002 .

[17]  K. Stevens Transverse Vibration of a Viscoelastic Column With Initial Curvature Under Periodic Axial Load , 1969 .

[18]  V. V. Bolotin,et al.  Dynamic Stability of Elastic Systems , 1965 .

[19]  Vibration of Orthotropic Circular Plates with a Concentric Isotropic Core , 1973 .

[20]  N. Ganesan,et al.  A vibration and damping analysis of circular plates with constrained damping layer treatment , 1993 .

[21]  S. Dost,et al.  On the dynamic stability of viscoelastic perfect columns , 1982 .

[22]  Yoshihiro Narita,et al.  Natural frequencies of completely free annular and circular plates having polar orthotropy , 1984 .

[23]  Lien-Wen Chen,et al.  Axisymmetric parametric resonance of polar orthotropic sandwich annular plates , 2004 .

[24]  Yi-Cheng Chen,et al.  An optimal placement of CLD treatment for vibration suppression of plates , 2002 .

[25]  B. E. Douglas,et al.  Transverse Compressional Damping in the Vibratory Response of Elastic-Viscoelastic-Elastic Beams. , 1978 .

[26]  Lien-Wen Chen,et al.  Axisymmetric dynamic stability of transversely isotropic Mindlin circular plates , 1988 .

[27]  Shyh-Chin Huang,et al.  Vibration of a three-layered viscoelastic sandwich circular plate , 2001 .

[28]  Anthony M. Waas,et al.  Stability analysis of a rotating multi-layer annular plate with a stationary frictional follower load , 1997 .

[29]  Lien-Wen Chen,et al.  Axisymmetric dynamic stability of a bimodulus thick circular plate , 1987 .

[30]  J. B. Greenberg,et al.  Flexural vibrations of certain full and annular composite orthotropic plates , 1979 .

[31]  Maurice Petyt,et al.  Finite element dynamic analysis of practical discs , 1978 .