Let k be a number field and K/k a V4-extension, i.e., a normal extension with Gal(K/k) = V4, where V4 is Klein’s four-group. K/k has three intermediate fields, say k1, k2, and k3. We will use the symbol N i (resp. Ni) to denote the norm of K/ki (resp. ki/k), and by a widespread abuse of notation we will apply N i and Ni not only to numbers, but also to ideals and ideal classes. The unit groups (groups of roots of unity, , groups of fractional ideals, class numbers) in these fields will be denoted by Ek, E1, E2, E3, EK (Wk,W1, . . . , JK , J1, . . . , hk, h1, . . . ) respectively, and the (finite) index q(K) = EK : E1E2E3) is called the unit index of K/k. For k = Q, k1 = Q( √ −1 ) and k2 = Q( √ m ) it was already known to Dirichlet [5] that hK = 12q(K)h2h3. Bachmann [2], Amberg [1] and Herglotz [12] generalized this class number formula gradually to arbitrary extensions K/Q whose Galois groups are elementary abelian 2-groups. A remark of Hasse [11, p. 3] seems to suggest that Varmon [30] proved a class number formula for extensions with Gal(K/k) an elementary abelian p-group; unfortunately, his paper was not accessible to me. Kuroda [18] later gave a formula in case there is no ramification at the infinite primes. Wada [31] stated a formula for 2-extensions of k = Q without any restriction on the ramification (and without proof), and finally Walter [32] used Brauer’s class number relations to deduce the most general Kuroda-type formula. As we shall see below, Walter’s formula for V4-extensions does not always give correct results if K contains the 8th roots of unity. This does not, however, seem to effect the validity of the work of Parry [22, 23] and Castela [4], both of whom made use of Walter’s formula. The proofs mentioned above use analytic methods; for V4-extensions K/Q, however, there exist algebraic proofs given by Hilbert [14] (if √ −1 ∈ K), Kuroda [17] (if √ −1 ∈ K), Halter-Koch [9] (if K is imaginary), and Kubota [15, 16]. For base fields k 6= Q, on the other hand, no non-analytic proofs seem to be known except for very special cases (see e.g. the very recent work of Berger [3]). In this paper we will show how Kubota’s proof can be generalized. The proof consists of two parts; in the first part, where we measure the extent to which Cl(K) is generated by classes coming from the Cl(ki), we will use class field theory in its ideal-theoretic formulation (see Hasse [10] or Garbanati [7]). The second part of the proof is a somewhat lengthy index computation.
[1]
Yoshiomi Furuta.
The Genus Field and Genus Number in Algebraic Number Fields
,
1967,
Nagoya Mathematical Journal.
[2]
H. Wada,et al.
On the class number and the unit group of certain algebraic number fields
,
1966
.
[3]
C. J. Parry.
On the class number of relative quadratic fields
,
1978
.
[4]
B. M. Fulk.
MATH
,
1992
.
[5]
G. G. Stokes.
"J."
,
1890,
The New Yale Book of Quotations.
[6]
D. Leep,et al.
The transfer ideal of quadratic forms and a Hasse norm theorem mod squares
,
1989
.
[7]
G. L. Dirichlet,et al.
Recherches sur les formes quadratiques à coëfficients et à indéterminées complexes. Première partie.
,
1842
.
[8]
Dennis Garbanti.
Class field theory summarized
,
1981
.
[9]
A. Scholz.
Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen. II.
,
1940
.
[10]
C. J. Parry.
Real quadratic fields with class numbers divisible by five
,
1977
.
[11]
S. Gurak.
Ideal-theoretic characterization of the relative genus field.
,
1977
.
[12]
Tomio Kubota,et al.
Über Den Bizyklischen Biquadratischen Zahlkörper
,
1956,
Nagoya Mathematical Journal.
[13]
E. E. Kummer.
Zur Theorie der complexen Zahlen.
,
1847
.
[14]
C. Herz,et al.
Construction of class fields
,
1966
.
[15]
Hasse's class number product formula for generalized Dirichlet fields and other types of number fields
,
1992
.
[16]
黒田 成勝.
Uber den Dirichletschen Korper
,
1945
.
[17]
D. Hilbert.
Über den Dirichletschen biquadratischen Zahlkörper
,
1932
.
[18]
F. Halter-Koch.
Ein Satz über die Geschlechter relativ-zyklischer Zahlkörper von Primzahlgrad und seine Anwendung auf biquadratisch-bizyklische Körper
,
1972
.
[19]
S. Kuroda.
Über die Klassenzahlen algebraischer Zahlkörper
,
1950
.
[20]
C. D. Walter.
Kuroda's class number relation
,
1979
.
[21]
H. Nehrkorn.
Über absolute idealklassengruppen und einheiten in algebraischen zahlkörpern
,
1933
.
[22]
A. Scholz.
Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen. I.
,
1936
.