Optimal a posteriori fringe tracking in optical interferometry

The so-called “phase delay tracking” attempts to estimate the effects of the turbulence on the phase of the interferograms in order to numerically cophase the measured complex visibilities and to coherently integrate them. This is implemented by the “coherent fringe analysis” of MIDI instrument1 but has only been used for high SNR data. In this paper, we investigate whether the sensitivity of this technique can be pushed to its theoretical limits and thus applied to fainter sources. In the general framework of the maximum likelihood and exploiting the chromatic behavior of the turbulence effects, we propose a global optimization strategy to compute various estimators of the differential pistons between two data frames. The most efficient estimators appear to be the ones based on the phasors, even though they do not yet reach the theoretical limits.

[1]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[2]  E. Tatulli,et al.  AMBER : Instrument description and first astrophysical results Special feature Interferometric data reduction with AMBER / VLTI . Principle , estimators , and illustration , 2007 .

[3]  D. F. Buscher,et al.  Detection noise bias and variance in the power spectrum and bispectrum in optical interferometry , 2011, 1106.3196.

[4]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[5]  Walter Jaffe Coherent fringe tracking and visibility estimation for MIDI , 2004, SPIE Astronomical Telescopes + Instrumentation.

[6]  Michel Tallon,et al.  Comparison of minimum-norm maximum likelihood and maximum a posteriori wavefront reconstructions for large adaptive optics systems. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[8]  Laurent M. Mugnier,et al.  Sub-pixel image registration with a maximum likelihood estimator. Application to the first adaptive optics observations of Arp 220 in the L' band , 2005 .

[9]  Hugues Bersini,et al.  S.T.E.P.: the easiest way to optimize a function , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[10]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[11]  É. Thiébaut,et al.  Maximum a posteriori planet detection and characterization with a nulling interferometer , 2005, Proceedings of the International Astronomical Union.

[12]  É. Thiébaut,et al.  Imagerie astrophysique à la limite de diffraction des grands télescopes. Application à l'observation des objets froids. , 1994 .

[13]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[14]  E. Tatulli,et al.  Comparison of Fourier and model-based estimators in single-mode multi-axial interferometry , 2006, astro-ph/0602346.

[15]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[16]  Frédéric Champagnat,et al.  Single image local blur identification , 2011, 2011 18th IEEE International Conference on Image Processing.