Colonization of heterochromatic genes by transposable elements in Drosophila.

As a further step toward understanding transposable element-host genome interactions, we investigated the molecular anatomy of introns from five heterochromatic and 22 euchromatic protein-coding genes of Drosophila melanogaster. A total of 79 kb of intronic sequences from heterochromatic genes and 355 kb of intronic sequences from euchromatic genes have been used in Blast searches against Drosophila transposable elements (TEs). The results show that TE-homologous sequences belonging to 19 different families represent about 50% of intronic DNA from heterochromatic genes. In contrast, only 0.1% of the euchromatic intron DNA exhibits homology to known TEs. Intraspecific and interspecific size polymorphisms of introns were found, which are likely to be associated with changes in TE-related sequences. Together, the enrichment in TEs and the apparent dynamic state of heterochromatic introns suggest that TEs contribute significantly to the evolution of genes located in heterochromatin.

[1]  P. Dimitri,et al.  Vital Genes in the Heterochromatin of Chromosomes 2 and 3 of Drosophila Melanogaster , 2003, Genetica.

[2]  H. Bünemann,et al.  Molecular Aspects of Intron Evolution in Dynein Encoding Mega-Genes on The Heterochromatic Y Chromosome of Drosophila sp. , 2004, Genetica.

[3]  D. Nouaud,et al.  Molecular domestication – more than a sporadic episode in evolution , 2004, Genetica.

[4]  P. Capy,et al.  Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? , 2004, Genetica.

[5]  E. Galun Transposable Elements , 2003, Springer Netherlands.

[6]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[7]  Manolo Gouy,et al.  Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. , 2002, Genome research.

[8]  P. Dimitri,et al.  Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster. , 2002, Genetics.

[9]  J. Rodriguez,et al.  Evidence for the adaptive significance of an LTR retrotransposon sequence in a Drosophila heterochromatic gene , 2002, BMC Evolutionary Biology.

[10]  J. M. Comeron,et al.  What controls the length of noncoding DNA? , 2001, Current opinion in genetics & development.

[11]  A. Nekrutenko,et al.  Transposable elements are found in a large number of human protein-coding genes. , 2001, Trends in genetics : TIG.

[12]  B. Charlesworth,et al.  Rates of movement and distribution of transposable elements in Drosophila melanogaster: in situ hybridization vs Southern blotting data. , 2001, Genetical research.

[13]  N. Bowen,et al.  Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.

[14]  G M Rubin,et al.  A BAC-based physical map of the major autosomes of Drosophila melanogaster. , 2000, Science.

[15]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[16]  Xiangqun H. Zheng,et al.  A Whole-Genome Assembly of Drosophila , 2000 .

[17]  R. Saunders In situ hybridization to polytene chromosomes. , 2000, Methods in molecular biology.

[18]  P. Dimitri,et al.  Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. , 1999, Trends in genetics : TIG.

[19]  D. Petrov,et al.  Genome size and intron size in Drosophila. , 1998, Molecular biology and evolution.

[20]  R. Britten,et al.  Mobile elements inserted in the distant past have taken on important functions. , 1997, Gene.

[21]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[22]  L. Berghella,et al.  High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. G. Kidwell,et al.  Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[24]  V. Corces,et al.  Transposable element-host interactions: regulation of insertion and excision. , 1997, Annual review of genetics.

[25]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[26]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[27]  H. Akashi,et al.  Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. , 1996, Genetics.

[28]  L. Berghella,et al.  The heterochromatic rolled gene of Drosophila melanogaster is extensively polytenized and transcriptionally active in the salivary gland chromocenter. , 1996, Genetics.

[29]  K. Lowenhaupt,et al.  Drosophila telomeres: new views on chromosome evolution. , 1996, Trends in genetics : TIG.

[30]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[31]  J. Parsch,et al.  Molecular evolution of the metallothionein gene Mtn in the melanogaster species group: results from Drosophila ananassae. , 1994, Genetics.

[32]  Spradling Ac Transposable elements and the evolution of heterochromatin. , 1994 .

[33]  S. Bonaccorsi,et al.  Looking at Drosophila mitotic chromosomes. , 1994, Methods in cell biology.

[34]  A. Spradling Transposable elements and the evolution of heterochromatin. , 1994, Society of General Physiologists series.

[35]  A. Hilliker,et al.  Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. , 1993, Genetics.

[36]  J. McDonald,et al.  Evolution and consequences of transposable elements. , 1993, Current opinion in genetics & development.

[37]  Stephen M. Mount,et al.  Splicing signals in Drosophila: intron size, information content, and consensus sequences. , 1992, Nucleic acids research.

[38]  P. Dimitri Cytogenetic analysis of the second chromosome heterochromatin of Drosophila melanogaster. , 1991, Genetics.

[39]  R. Devlin,et al.  The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. , 1990, Genetics.

[40]  B. Charlesworth,et al.  The population genetics of Drosophila transposable elements. , 1989, Annual review of genetics.

[41]  R. Flavell,et al.  Repetitive DNA and chromosome evolution in plants. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[43]  A. Hilliker Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. , 1976, Genetics.