News Video Retrieval by Learning Multimodal Semantic Information

With the explosion of multimedia data especially that of video data, requirement of efficient video retrieval has becoming more and more important. Years of TREC Video Retrieval Evaluation (TRECVID) research gives benchmark for video search task. The video data in TRECVID are mainly news video. In this paper a compound model consisting of several atom search modules, i.e., textual and visual, for news video retrieval is introduced. First, the analysis on query topics helps to improve the performance of video retrieval. Furthermore, the multimodal fusion of all atom search modules ensures to get good performance. Experimental results on TRECVID 2005 and TRECVID 2006 search tasks demonstrate the effectiveness of the proposed method.

[1]  George A. Miller,et al.  WordNet: A Lexical Database for the English Language , 2002 .

[2]  Ahmed K. Elmagarmid,et al.  InsightVideo: toward hierarchical video content organization for efficient browsing, summarization and retrieval , 2005, IEEE Transactions on Multimedia.

[3]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Ricky Houghton Named Faces: Putting Names to Faces , 1999, IEEE Intell. Syst..

[5]  Grace Hui Yang,et al.  VideoQA: question answering on news video , 2003, MULTIMEDIA '03.

[6]  Jun Yang,et al.  Naming every individual in news video monologues , 2004, MULTIMEDIA '04.

[7]  Timo Ojala,et al.  Analysing the performance of visual, concept and text features in content-based video retrieval , 2004, MIR '04.

[8]  Wei-Hao Lin,et al.  Confounded Expectations: Informedia at TRECVID 2004 , 2004, TRECVID.

[9]  Chong-Wah Ngo,et al.  Clip-based similarity measure for hierarchical video retrieval , 2004, MIR '04.

[10]  Ofer Melnik,et al.  Mixed group ranks: preference and confidence in classifier combination , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Paul D. Over,et al.  TREC Video Retrieval Evaluation Website | NIST , 2000 .

[12]  Gang Wang,et al.  TRECVID 2004 Search and Feature Extraction Task by NUS PRIS , 2004, TRECVID.

[13]  Rong Yan,et al.  Co-retrieval: A Boosted Reranking Approach for Video Retrieval , 2004, CIVR.

[14]  Lei Cen,et al.  Fudan University at TRECVID 2008 , 2008, TRECVID.

[15]  Rong Yan,et al.  Co-retrieval: a boosted reranking approach for video retrieval , 2005 .

[16]  Michael G. Christel,et al.  Addressing the challenge of visual information access from digital image and video libraries , 2005, Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '05).