Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice.

[1]  K. Pacheco Allergy to Surgical Implants , 2018, Clinical Reviews in Allergy & Immunology.

[2]  Xuetao Cao,et al.  Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease , 2015, Nature Reviews Immunology.

[3]  J. Thyssen,et al.  Mobile Phone Dermatitis in Children and Adults: A Review of the Literature. , 2014, Pediatric allergy, immunology, and pulmonology.

[4]  H. Bontkes,et al.  Transition metal sensing by Toll‐like receptor‐4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators , 2013, Contact dermatitis.

[5]  C. Geisler,et al.  CD4+ T cells producing interleukin (IL)‐17, IL‐22 and interferon‐γ are major effector T cells in nickel allergy , 2013, Contact dermatitis.

[6]  A. Goossens,et al.  An update on airborne contact dermatitis: 2007–2011 , 2013, Contact dermatitis.

[7]  C. Coban,et al.  Particulate Adjuvant and Innate Immunity: Past Achievements, Present Findings, and Future Prospects , 2013, International reviews of immunology.

[8]  R. Hurt,et al.  Chemical transformations of nanosilver in biological environments. , 2012, ACS nano.

[9]  H. Bouwmeester,et al.  Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. , 2012, ACS nano.

[10]  G. Jiang,et al.  Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. , 2012, ACS nano.

[11]  Jürgen Lademann,et al.  Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. , 2012, ACS nano.

[12]  E. Patsouris,et al.  Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty , 2012, Journal of applied toxicology : JAT.

[13]  B. Igyártó,et al.  Early immune events in the induction of allergic contact dermatitis , 2012, Nature Reviews Immunology.

[14]  Elizabeth A. Casman,et al.  Meditations on the ubiquity and mutability of nano-sized materials in the environment. , 2011, ACS nano.

[15]  James E Hutchison,et al.  Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. , 2011, ACS nano.

[16]  J. Yiannias,et al.  Patch Testing with a Large Series of Metal Allergens: Findings from More Than 1,000 Patients in One Decade at Mayo Clinic , 2011, Dermatitis : contact, atopic, occupational, drug.

[17]  Grace Y Chen,et al.  Sterile inflammation: sensing and reacting to damage , 2010, Nature Reviews Immunology.

[18]  Martin F. Bachmann,et al.  Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns , 2010, Nature Reviews Immunology.

[19]  R. Hurt,et al.  Controlled release of biologically active silver from nanosilver surfaces. , 2010, ACS nano.

[20]  Thomas Vogl,et al.  Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel , 2010, Nature Immunology.

[21]  M. Rothenberg Innate sensing of nickel , 2010, Nature Immunology.

[22]  J. Ring,et al.  Does airborne nickel exposure induce nickel sensitization? , 2010, Contact dermatitis.

[23]  T. Kündig,et al.  Nickel sensitisation in mice: a critical appraisal. , 2010, Journal of dermatological science.

[24]  P. Campbell,et al.  Nanotoxicology of metal wear particles in total joint arthroplasty: a review of current concepts. , 2010, Journal of applied biomaterials & biomechanics : JABB.

[25]  S. Garcovich,et al.  IL-17 Amplifies Human Contact Hypersensitivity by Licensing Hapten Nonspecific Th1 Cells to Kill Autologous Keratinocytes , 2010, The Journal of Immunology.

[26]  Torkil Menné,et al.  Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications. , 2010, Chemical research in toxicology.

[27]  F. Nestle,et al.  Increased metal allergy in patients with failed metal‐on‐metal hip arthroplasty and peri‐implant T‐lymphocytic inflammation , 2009, Allergy.

[28]  Sergio Romagnani,et al.  Human Th17 cells: Are they different from murine Th17 cells? , 2009, European journal of immunology.

[29]  Luke J Mortensen,et al.  In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. , 2008, Nano letters.

[30]  A. Goossens,et al.  An update on airborne contact dermatitis: 2001–2006 , 2007, Contact dermatitis.

[31]  Allan Linneberg,et al.  The epidemiology of contact allergy in the general population – prevalence and main findings , 2007, Contact dermatitis.

[32]  Sai T Reddy,et al.  Exploiting lymphatic transport and complement activation in nanoparticle vaccines , 2007, Nature Biotechnology.

[33]  Y. Iwakura,et al.  Lipopolysaccharide promotes and augments metal allergies in mice, dependent on innate immunity and histidine decarboxylase , 2007, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[34]  Sai T Reddy,et al.  In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[35]  U. V. Andrian,et al.  T cell– and B cell–independent adaptive immunity mediated by natural killer cells , 2006, Nature Immunology.

[36]  T. Menné,et al.  Systemic contact dermatitis after oral exposure to nickel: a review with a modified meta‐analysis , 2006, Contact dermatitis.

[37]  M. Jenkins,et al.  Antigen presentation to naive CD4 T cells in the lymph node , 2003, Nature Immunology.

[38]  J. van Bergen,et al.  A New Type of Metal Recognition by Human T Cells , 2003, The Journal of experimental medicine.

[39]  J. Kappler,et al.  Components of the Ligand for a Ni++ Reactive Human T Cell Clone , 2003, The Journal of experimental medicine.

[40]  P. Askenase,et al.  B Cell–dependent T Cell Responses , 2002, The Journal of experimental medicine.

[41]  P. Askenase Yes T cells, but three different T cells (αβ, γδ and NK T cells), and also B‐1 cells mediate contact sensitivity , 2001 .

[42]  D. Jäger,et al.  The Leukotriene C4 Transporter MRP1 Regulates CCL19 (MIP-3β, ELC)–Dependent Mobilization of Dendritic Cells to Lymph Nodes , 2000, Cell.

[43]  T. Schwarz,et al.  Nickel allergy in mice: enhanced sensitization capacity of nickel at higher oxidation states. , 1999, Journal of immunology.

[44]  Jack R. Worrall,et al.  Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. , 1998, Journal of biomedical materials research.

[45]  J. Vollmer,et al.  Characterization of processing requirements and metal cross‐reactivities in T cell clones from patients with allergic contact dermatitis to nickel , 1995, European journal of immunology.

[46]  I. Kimber,et al.  Contact sensitization of mice to nickel sulphate and potassium dichromate , 1990, Contact dermatitis.

[47]  Michael Sixt,et al.  The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. , 2005, Immunity.

[48]  P. Askenase Yes T cells, but three different T cells (alphabeta, gammadelta and NK T cells), and also B-1 cells mediate contact sensitivity. , 2001, Clinical and experimental immunology.

[49]  K. de Groot,et al.  Successful induction of allergic contact dermatitis to mercury and chromium in mice. , 1991, International archives of allergy and applied immunology.