Counting Plane Graphs: Cross-Graph Charging Schemes
暂无分享,去创建一个
[1] Csaba D. Tóth,et al. Counting Plane Graphs: Flippability and Its Applications , 2011, WADS.
[2] Micha Sharir,et al. On degrees in random triangulations of point sets , 2011, J. Comb. Theory, Ser. A.
[3] Marc Noy,et al. Lower bounds on the number of crossing-free subgraphs of KN , 2000, Comput. Geom..
[4] Eugène Catalan. Solution nouvelle de cette question : un polygone étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales? , 1839 .
[5] Emo Welzl,et al. Counting Plane Graphs with Exponential Speed-Up , 2011, Rainbow of Computer Science.
[6] Micha Sharir,et al. Random triangulations of planar point sets , 2006, SCG '06.
[7] Pavel Valtr. Graph Drawings with no k Pairwise Crossing Edges , 1997, Graph Drawing.
[8] Christian Sohler,et al. Encoding a triangulation as a permutation of its point set , 1997, CCCG.
[9] Ferran Hurtado,et al. On the Number of Plane Geometric Graphs , 2007, Graphs Comb..
[10] Csaba D. Tóth,et al. Bounds on the maximum multiplicity of some common geometric graphs , 2011, STACS.
[11] Heinrich Heesch,et al. Untersuchungen zum Vierfarbenproblem , 1969 .
[12] Raimund Seidel,et al. A better upper bound on the number of triangulations of a planar point set , 2003, J. Comb. Theory, Ser. A.
[13] Kevin Buchin,et al. On the Number of Spanning Trees a Planar Graph Can Have , 2009, ESA.
[14] Eyal Ackerman. On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2009, Discret. Comput. Geom..
[15] E. Szemerédi,et al. Crossing-Free Subgraphs , 1982 .
[16] Raimund Seidel,et al. On the Number of Cycles in Planar Graphs , 2007, COCOON.
[17] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[18] Jack Snoeyink,et al. Number of Crossing-Free Geometric Graphs vs. Triangulations , 2008, Electron. Notes Discret. Math..
[19] Philippe Flajolet,et al. Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..
[20] Micha Sharir,et al. Counting Triangulations of Planar Point Sets , 2009, Electron. J. Comb..
[21] Gábor Tardos,et al. On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.
[22] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[23] János Pach. Geometric Graph Theory , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..