A Framework for Interactive Geospatial Map Cleaning using GPS Trajectories

A volunteered geographic information system, e.g., OpenStreetMap (OSM), collects data from volunteers to generate geospatial maps. To keep the map consistent, volunteers are expected to perform the tedious task of updating the underlying geospatial data at regular intervals. Such map curation step takes time and considerable human effort. In this paper, we propose a framework that improves the process of updating geospatial maps by automatically identifying road changes from user generated GPS traces. Since GPS traces can be sparse and noisy, the proposed framework validates the map changes with the users before propagating them to a publishable version of the map. The proposed framework achieves up to four times faster map matching performance than the state-of-the-art algorithms with only 0.1--0.3% accuracy loss.

[1]  E. Krakiwsky,et al.  A Kalman filter for integrating dead reckoning, map matching and GPS positioning , 1988, IEEE PLANS '88.,Position Location and Navigation Symposium, Record. 'Navigation into the 21st Century'..

[2]  Michael Stonebraker,et al.  Detecting Data Errors: Where are we and what needs to be done? , 2016, Proc. VLDB Endow..

[3]  T. Srikanthan,et al.  A Map Matching Method for GPS Based Real-Time Vehicle Location , 2004, Journal of Navigation.

[4]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[5]  Latifur Khan,et al.  Proceedings, Part II, of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining - Volume 9652 , 2016 .

[6]  Meng Yu Improved positioning of land vehicle in its using digital map and other accessory information , 2006 .

[7]  Yin Wang,et al.  Mining large-scale, sparse GPS traces for map inference: comparison of approaches , 2012, KDD.

[8]  Francisco C. Pereira,et al.  An off-line map-matching algorithm for incomplete map databases , 2009 .

[9]  Washington Y. Ochieng,et al.  A general map matching algorithm for transport telematics applications , 2003 .

[10]  Nikolaos Papanikolopoulos,et al.  Clustering of Vehicle Trajectories , 2010, IEEE Transactions on Intelligent Transportation Systems.

[11]  Paolo Papotti,et al.  Holistic data cleaning: Putting violations into context , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[12]  Stefan Edelkamp,et al.  Collaborative Map Generation – Survey and Architecture Proposal , 2008 .

[13]  S. C. Van der Spek,et al.  Urbanism on Track: Application of tracking technologies in urbanism , 2008 .

[14]  Wentong Cai,et al.  Map stream: Initializing what-if analyses for real-time symbiotic traffic simulations , 2014, Proceedings of the Winter Simulation Conference 2014.

[15]  Nirvana Meratnia,et al.  Aggregation and comparison of trajectories , 2002, GIS '02.

[16]  Hackney K. W. Axhausen map-matching of large GPS data sets - Tests on a speed monitoring experiment in Zurich , 2004 .

[17]  Christopher Wilson,et al.  Mining GPS Traces for Map Refinement , 2004, Data Mining and Knowledge Discovery.

[18]  David Bernstein,et al.  Some map matching algorithms for personal navigation assistants , 2000 .

[19]  John Krumm,et al.  Hidden Markov map matching through noise and sparseness , 2009, GIS.

[20]  Jean-Michel Loubes,et al.  Review and Perspective for Distance-Based Clustering of Vehicle Trajectories , 2016, IEEE Transactions on Intelligent Transportation Systems.

[21]  A. Kornhauser,et al.  An Introduction to Map Matching for Personal Navigation Assistants , 1998 .

[22]  Weiwei Sun,et al.  Quick map matching using multi-core CPUs , 2012, SIGSPATIAL/GIS.

[23]  Washington Y. Ochieng,et al.  Integrity of map-matching algorithms , 2006 .

[24]  James Biagioni,et al.  Map inference in the face of noise and disparity , 2012, SIGSPATIAL/GIS.

[25]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[26]  Tae-Kyung Sung,et al.  Development of a map matching method using the multiple hypothesis technique , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[27]  Paolo Papotti,et al.  KATARA: A Data Cleaning System Powered by Knowledge Bases and Crowdsourcing , 2015, SIGMOD Conference.

[28]  Shuai Ma,et al.  Improving Data Quality: Consistency and Accuracy , 2007, VLDB.

[29]  Shun Li,et al.  Online Learning for Accurate Real-Time Map Matching , 2016, PAKDD.

[30]  R. Bruntrup,et al.  Incremental map generation with GPS traces , 2005, Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005..