An adaptive spatial diversity receiver for non-Gaussian interference and noise

Standard linear diversity combining techniques are not effective in combating fading in the presence of non-Gaussian noise. An adaptive spatial diversity receiver is developed for wireless communication channels with slow, flat fading and additive non-Gaussian noise. The noise is modeled as a mixture of Gaussian distributions, and the expectation-maximization (EM) algorithm is used to derive estimates for the model parameters. The parameter estimates are used in a generalized likelihood ratio test to reproduce the transmitted signals. The new receiver is shown to be relatively insensitive to errors in the parameter estimates as well as to errors in modeling the actual noise distribution.

[1]  D. Middleton,et al.  Optimum Reception in an Impulsive Interference Environment - Part II: Incoherent Reception , 1977, IEEE Transactions on Communications.

[2]  J. Modestino Adaptive Detection of Signals in Impulsive Noise Environments , 1977, IEEE Trans. Commun..

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  James W. Modestino,et al.  Detection of weak signals in narrowband non-Gaussian noise , 1979, IEEE Trans. Inf. Theory.

[5]  Louis A. Liporace,et al.  Maximum likelihood estimation for multivariate observations of Markov sources , 1982, IEEE Trans. Inf. Theory.

[6]  Kenneth S. Vastola,et al.  Threshold Detection in Narrow-Band Non-Gaussian Noise , 1984, IEEE Trans. Commun..

[7]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[8]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[9]  Luigi Paura,et al.  Asymptotically Optimum Space-Diversity Detection in Non-Gaussian Noise , 1986, IEEE Trans. Commun..

[10]  S. Kassam Signal Detection in Non-Gaussian Noise , 1987 .

[11]  H. Vincent Poor,et al.  Performance of DS/SSMA Communications in Impulsive Channels - Part I: Linear Correlation Receivers , 1986, IEEE Transactions on Communications.

[12]  C. E. Goutis,et al.  Performance of optimum threshold incoherent diversity in non-Gaussian noise and fading , 1989 .

[13]  Vijay K. Rohatgi,et al.  Robustness of statistical tests , 1989 .

[14]  H. Vincent Poor,et al.  Parameter estimation for Middleton Class A interference processes , 1989, IEEE Trans. Commun..

[15]  Luigi Paura,et al.  Optimum threshold diversity reception of NCFSK signals in non-gaussian noise , 1990 .

[16]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[17]  J. D. Parsons,et al.  The Mobile Radio Propagation Channel , 1991 .

[18]  J. A. Catipovic,et al.  Spatial diversity processing for underwater acoustic telemetry , 1991 .

[19]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[20]  Carl-Erik W. Sundberg,et al.  Advanced techniques for modulation, error correction, channel equalization, and diversity , 1993, AT&T Technical Journal.

[21]  Theodore S. Rappaport,et al.  Measurements and Models of Radio Frequency Impulsive Noise for Indoor Wireless Communications , 1993, IEEE J. Sel. Areas Commun..

[22]  A. Öztürk,et al.  Non-Gaussian random vector identification using spherically invariant random processes , 1993 .

[23]  Alfred O. Hero,et al.  Space-alternating generalized expectation-maximization algorithm , 1994, IEEE Trans. Signal Process..

[24]  Richard D. Gitlin,et al.  The impact of antenna diversity on the capacity of wireless communication systems , 1994, IEEE Trans. Commun..

[25]  George A. Wright,et al.  Nonparametric density estimation and detection in impulsive interference channels. I. Estimators , 1994, IEEE Trans. Commun..

[26]  J. Ilow,et al.  Detection for binary transmission in a mixture of Gaussian noise and impulsive noise modeled as an alpha-stable process , 1994, IEEE Signal Processing Letters.

[27]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[28]  D. W. J. Stein Detection of random signals in Gaussian mixture noise , 1995, IEEE Trans. Inf. Theory.

[29]  Chrysostomos L. Nikias,et al.  Maximum likelihood localization of sources in noise modeled as a stable process , 1995, IEEE Trans. Signal Process..

[30]  Marco Lops,et al.  Optimum detection of fading signals in impulsive noise , 1995, IEEE Trans. Commun..

[31]  Chrysostomos L. Nikias,et al.  Incoherent receivers in alpha-stable impulsive noise , 1995, IEEE Trans. Signal Process..

[32]  P. A. Delaney,et al.  Signal detection in multivariate class-A interference , 1995, IEEE Trans. Commun..

[33]  Chrysostomos L. Nikias,et al.  Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process , 1995, IEEE Trans. Commun..

[34]  Marco Lops,et al.  Canonical detection in spherically invariant noise , 1995, IEEE Trans. Commun..

[35]  Norihiko Morinaga,et al.  Performance analysis of QAM systems under class A impulsive noise environment , 1995 .

[36]  Saleem A. Kassam,et al.  Nonlinear color image restoration using extended radial basis function networks , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[37]  H. Vincent Poor,et al.  Iterative multiuser receivers for CDMA channels: an EM-based approach , 1996, IEEE Trans. Commun..

[38]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[39]  Saleem A. Kassam,et al.  RBFN restoration of nonlinearly degraded images , 1996, IEEE Trans. Image Process..

[40]  Costas N. Georghiades,et al.  Sequence estimation in the presence of random parameters via the EM algorithm , 1997, IEEE Trans. Commun..

[41]  Theodore S. Rappaport,et al.  Characteristics of impulsive noise in the 450-MHz band in hospitals and clinics , 1998 .

[42]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .