Study on deformation prediction of landslide based on genetic algorithm and improved BP neural network

Purpose – The purpose of this paper is to improve back propagation neural network (BPNN) modeling in order to promote the forecast calculation precision of landslide deformation.Design/methodology/approach – The genetic algorithm is adopted to optimize the architectural parameter of BPNN so as to avoided errors occurrence while using the trial‐and‐error method. Furthermore, the Sigmoid function is improved and revised to expand the output range of change‐over function from unipolar (only positive) to ambipolar (may be positive or negative), then the convergence time is reduced and the neural network can express more artificial intelligence.Findings – The modeling can effectively reduce the probability to get into the local minima while employing neural networks to forecast the landslide deformation. It significantly promotes the forecast precision.Research limitations/implications – The improved BPNN modeling, which is very good in learning and processing information, can work out the complex non‐linear r...