ω-Models of finite set theory
暂无分享,去创建一个
[1] H. Keisler. Model theory for infinitary logic , 1971 .
[2] Richard Kaye,et al. On Interpretations of Arithmetic and Set Theory , 2007, Notre Dame J. Formal Log..
[3] Jaroslav Nesetril,et al. A note on homomorphism-independent families , 2001, Discret. Math..
[4] Domenico Zambella,et al. A Note on Recursive Models of Set Theories , 2001, Notre Dame J. Formal Log..
[5] Wilfrid Hodges,et al. Model Theory: The existential case , 1993 .
[6] Jon Barwise,et al. Admissible sets and structures , 1975 .
[7] Petr Vopênka,et al. Über Die Gültigkeit Des Fundierungsaxioms in Speziellen Systemen Der Mengentheorie , 1963 .
[8] G. Kreisel. Note on arithmetic models for consistent formulae of the predicate calculus , 1950 .
[9] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[10] G. Kreisel,et al. Note on Arithmetic Models for Consistent Formulae of the Predicate Calculus II , 1953 .
[11] Akito Tsuboi,et al. Nonstandard models that are definable in models of Peano Arithmetic , 2007, Math. Log. Q..
[12] Albert Visser,et al. Categories of theories and interpretations , 2004 .
[13] Andrzej Mostowski,et al. On a System of Axioms Which Has no Recursively Enumerable Arithmetic Model , 1953 .
[14] Shahram Mohsenipour. A RECURSIVE NONSTANDARD MODEL FOR OPEN INDUCTION WITH GCD PROPERTY AND COFINAL PRIMES , 2006 .
[15] Michael O. Rabin,et al. On recursively enumerable and arithmetic models of set theory , 1958, Journal of Symbolic Logic.
[16] Paul Bernays,et al. A system of axiomatic set theory—Part I , 1937, Journal of Symbolic Logic.
[17] James H. Schmerl,et al. The Structure of Models of Peano Arithmetic , 2006 .
[18] Ronald Regan,et al. Basic Set Theory , 2000 .
[19] Urlich Felgner,et al. Comparison of the axioms of local and universal choice , 1971 .
[20] Ladislav Rieger. A contribution to Gödel's axiomatic set theory, III , 1957 .
[21] S. Lane. Categories for the Working Mathematician , 1971 .
[22] James H. Schmerl. An Axiomatization for a Class of Two-Cardinal Models , 1977, J. Symb. Log..
[23] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[24] R. Frucht. Herstellung von Graphen mit vorgegebener abstrakter Gruppe , 1939 .
[25] N. Meyers,et al. H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[26] P. Vopenka,et al. Mathematics in the alternative set theory , 1979 .
[27] Petr Hájek,et al. Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.
[28] Stefano Baratella,et al. A Theory of Sets with the Negation of the Axiom of Inflnity , 1993, Math. Log. Q..