ω-Models of finite set theory

Finite set theory, here denoted ZFfin, is the theory ob- tained by replacing the axiom of infinity by its negation in the usual axiomatization of ZF (Zermelo-Fraenkel set theory). An !-model of ZFfin is a model in which every set has at most finitely many elements (as viewed externally). Mancini and Zambella (2001) em- ployed the Bernays-Rieger method of permutations to construct a recursive !-model of ZFfin that is nonstandard (i.e., not isomor- phic to the hereditarily finite sets V!). In this paper we initiate the metamathematical investigation of !-models of ZFfin. In par- ticular, we present a new method for building !-models of ZFfin that leads to a perspicuous construction of recursive nonstandard !-models of ZFfin without the use of permutations. Furthermore, we show that every recursive model of ZFfin is an !-model. The central theorem of the paper is the following:

[1]  H. Keisler Model theory for infinitary logic , 1971 .

[2]  Richard Kaye,et al.  On Interpretations of Arithmetic and Set Theory , 2007, Notre Dame J. Formal Log..

[3]  Jaroslav Nesetril,et al.  A note on homomorphism-independent families , 2001, Discret. Math..

[4]  Domenico Zambella,et al.  A Note on Recursive Models of Set Theories , 2001, Notre Dame J. Formal Log..

[5]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[6]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[7]  Petr Vopênka,et al.  Über Die Gültigkeit Des Fundierungsaxioms in Speziellen Systemen Der Mengentheorie , 1963 .

[8]  G. Kreisel Note on arithmetic models for consistent formulae of the predicate calculus , 1950 .

[9]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[10]  G. Kreisel,et al.  Note on Arithmetic Models for Consistent Formulae of the Predicate Calculus II , 1953 .

[11]  Akito Tsuboi,et al.  Nonstandard models that are definable in models of Peano Arithmetic , 2007, Math. Log. Q..

[12]  Albert Visser,et al.  Categories of theories and interpretations , 2004 .

[13]  Andrzej Mostowski,et al.  On a System of Axioms Which Has no Recursively Enumerable Arithmetic Model , 1953 .

[14]  Shahram Mohsenipour A RECURSIVE NONSTANDARD MODEL FOR OPEN INDUCTION WITH GCD PROPERTY AND COFINAL PRIMES , 2006 .

[15]  Michael O. Rabin,et al.  On recursively enumerable and arithmetic models of set theory , 1958, Journal of Symbolic Logic.

[16]  Paul Bernays,et al.  A system of axiomatic set theory—Part I , 1937, Journal of Symbolic Logic.

[17]  James H. Schmerl,et al.  The Structure of Models of Peano Arithmetic , 2006 .

[18]  Ronald Regan,et al.  Basic Set Theory , 2000 .

[19]  Urlich Felgner,et al.  Comparison of the axioms of local and universal choice , 1971 .

[20]  Ladislav Rieger A contribution to Gödel's axiomatic set theory, III , 1957 .

[21]  S. Lane Categories for the Working Mathematician , 1971 .

[22]  James H. Schmerl An Axiomatization for a Class of Two-Cardinal Models , 1977, J. Symb. Log..

[23]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[24]  R. Frucht Herstellung von Graphen mit vorgegebener abstrakter Gruppe , 1939 .

[25]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Vopenka,et al.  Mathematics in the alternative set theory , 1979 .

[27]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[28]  Stefano Baratella,et al.  A Theory of Sets with the Negation of the Axiom of Inflnity , 1993, Math. Log. Q..