The Logarithmic Image Processing Model: Connections with Human Brightness Perception and Contrast Estimators

The logarithmic image processing (LIP) model is amathematical framework based on abstract linear mathematicswhich provides a set of specific algebraic and functionaloperations that can be applied to the processing of intensityimages valued in a bounded range. The LIP model has been provedto be physically justified in the setting of transmitted lightand to be consistent with several laws and characteristics ofthe human visual system. Successful application examples havealso been reported in several image processing areas, e.g.,image enhancement, image restoration, three-dimensional imagereconstruction, edge detection and image segmentation.The aim of this article is to show that the LIP model is atractable mathematical framework for image processing which isconsistent with several laws and characteristics of humanbrightness perception. This is a survey article in the sensethat it presents (almost) previously published results in arevised, refined and self-contained form. First, an introductionto the LIP model is exposed. Emphasis will be especially placedon the initial motivation and goal, and on the scope of themodel. Then, an introductory summary of mathematicalfundamentals of the LIP model is detailed. Next, the articleaims at surveying the connections of the LIP model with severallaws and characteristics of human brightness perception, namelythe brightness scale inversion, saturation characteristic, Weber'sand Fechner's laws, and the psychophysical contrast notion. Finally,it is shown that the LIP model is a powerful and tractable framework for handling the contrast notion. This is done througha survey of several LIP-model-based contrast estimators associated with special subparts (point, pair of points,boundary, region) of intensity images, that are justified bothfrom a physical and mathematical point of view.

[1]  Theo Pavlidis,et al.  Algorithms for Graphics and Imag , 1983 .

[2]  M. H. Pirenne,et al.  VISION AND THE EYE , 1949 .

[3]  D. Hood,et al.  Comparison of changes in sensitivity and sensation: implications for the response-intensity function of the human photopic system. , 1979, Journal of experimental psychology. Human perception and performance.

[4]  J. Pinoli Contribution a la modelisation, au traitement et a l'analyse d'image , 1987 .

[5]  William K. Pratt,et al.  Digital image processing (2nd ed.) , 1991 .

[6]  J. Pinoli,et al.  Justifications physiques et applications du modèle LIP pour le traitement des images obtenues en lumière transmise , 1996 .

[7]  Guang Deng,et al.  Low-bit-rate image coding using sketch image and JBIG , 1995, Electronic Imaging.

[8]  H R BLACKWELL,et al.  Contrast thresholds of the human eye. , 1946, Journal of the Optical Society of America.

[9]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[10]  T. Yung Kong,et al.  A topological approach to digital topology , 1991 .

[11]  Shmuel Peleg,et al.  Inversion of picture operators , 1987, Pattern Recognit. Lett..

[12]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[13]  Shmuel Peleg,et al.  PICTURES AS ELEMENTS IN VECTOR SPACE. , 1983, CVPR 1983.

[14]  S. S. Stevens,et al.  Handbook of experimental psychology , 1951 .

[15]  Guang Deng,et al.  Differentiation-Based Edge Detection Using the Logarithmic Image Processing Model , 1998, Journal of Mathematical Imaging and Vision.

[16]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[17]  Bernard Roux Mise au point d'une méthode d'analyse d'images qui reconnait et quantifie les phases de Clinker , 1993 .

[18]  H. Fédérer Geometric Measure Theory , 1969 .

[19]  Jean-Charles Pinoli,et al.  A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches , 1997, Signal Process..

[20]  Maryellen L. Giger,et al.  Quantitative performance evaluation of the EM algorithm applied to radiographic images , 1991, Electronic Imaging.

[21]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[22]  G. Fechner Elemente der Psychophysik , 1998 .

[23]  Jean-Charles Pinoli Metrics, scalar product and correlation adapted to logarithmic images , 1992 .

[24]  Jean-Charles Pinoli,et al.  A model for logarithmic image processing , 1988 .

[25]  Gustav Theodor Fechner,et al.  Elemente der Psychophysik / vol. 1 , 1889 .

[26]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[27]  Y Y Zeevi,et al.  Noise suppression in photoreceptors and its relevance to incremental intensity thresholds. , 1978, Journal of the Optical Society of America.

[28]  広 久保田,et al.  Principle of Optics , 1960 .

[29]  Bernard Laget,et al.  2 - Segmentation d'images par utilisation de pyramides à bases locales , 1993 .

[30]  Jean-Charles Pinoli,et al.  Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model , 1995, Signal Process..

[31]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[32]  Larry S. Davis,et al.  Noisy image restoration by cost function minimization , 1985, Pattern Recognit. Lett..

[33]  F. Werblin Control of Retinal Sensitivity II . Lateral Interactions at the Outer Plexiform Layer , 2022 .

[34]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[35]  S. S. Stevens,et al.  Ratio scales and category scales for a dozen perceptual continua. , 1957, Journal of experimental psychology.

[36]  G. Ekman,et al.  Is the Power Law a Special Case of Fechner's Law? , 1964, Perceptual and motor skills.

[37]  Philip Gremillet,et al.  Dedicated image analysis techniques for three-dimensional reconstruction from serial sections in electron microscopy , 1991, Machine Vision and Applications.

[38]  E. Poulton The new psychophysics: Six models for magnitude estimation. , 1968 .

[39]  Michel Treisman,et al.  Sensory Scaling and the Psychophysical Law , 1964 .

[40]  M Jourlin,et al.  Contrast definition and contour detection for logarithmic images , 1989, Journal of microscopy.

[41]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[42]  I. Gordon Theories of Visual Perception , 1989 .

[43]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[44]  Thomas G. Stockham,et al.  Toward the unification of three visual laws and two visual models in brightness perception , 1989, IEEE Trans. Syst. Man Cybern..

[45]  James C. Alexander,et al.  The Boundary Count of Digital Pictures , 1971, JACM.

[46]  M. Lévesque Perception , 1986, The Yale Journal of Biology and Medicine.

[47]  J C Baird,et al.  An empirical test of two psychophysical models. , 1974, Acta psychologica.

[48]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[49]  M Jourlin,et al.  Three‐dimensional electron microscopy of entire cells , 1990, Journal of microscopy.

[50]  R. W. Hornbeck Numerical Methods , 1975 .

[51]  M L Giger,et al.  Application of the EM algorithm to radiographic images. , 1992, Medical physics.

[52]  P. Corcuff,et al.  3D reconstruction of human hair by confocal microscopy , 1993 .

[53]  S. S. Stevens The surprising simplicity of sensory metrics. , 1962 .

[54]  H. Cartan,et al.  Cours de calcul différentiel , 1977 .

[55]  Guang Deng,et al.  Multiscale image enhancement using the logarithmic image processing model , 1993 .

[56]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[57]  Jr. Thomas G. Stockham,et al.  Image processing in the context of a visual model , 1972 .

[58]  L. E. Krueger Reconciling Fechner and Stevens: Toward a unified psychophysical law , 1989, Behavioral and Brain Sciences.

[59]  Gershon Buchsbaum,et al.  An Analytical Derivation of Visual Nonlinearity , 1980, IEEE Transactions on Biomedical Engineering.

[60]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[61]  T O Kvålseth Fechner's Psychophysical Law as a Special Case of Stevens' Three-Parameter Power Law , 1992, Perceptual and motor skills.

[62]  G. R. Tobin,et al.  The study of logarithmic image processing model and its application to image enhancement , 1995, IEEE Trans. Image Process..

[63]  M. Fuortes Initiation of impulses in visual cells of Limulus , 1959, The Journal of physiology.

[64]  E. Buckingham,et al.  Psychophysical tests of models of the response-intensity function , 1979, Vision Research.

[65]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[66]  Philippe Gremillet Reconstruction et visualisation de surfaces et de volumes en microscopie électronique à transmission et en microscopie confocale , 1992 .

[67]  M Jourlin,et al.  LIP‐model‐based three‐dimensional reconstruction and visualization of HIV‐infected entire cells , 1994, Journal of microscopy.

[68]  K. Maxwell The Impossible Dream , 1996 .

[69]  W. G. Driscoll,et al.  Handbook of optics , 1978 .

[70]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[71]  A. Rose,et al.  Vision: human and electronic , 1973 .

[72]  Tarald O. Kvålseth Is Fechner's Logarithmic Law a Special Case of Stevens' Power Law? , 1981 .

[73]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[74]  R. Mansfield Visual adaptation: Retinal transduction, brightness and sensitivity , 1976, Vision Research.

[75]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[76]  R. W. Dltchburn Vision and the eye, 2nd edition , 1968 .

[77]  R. W. Ditchburn Light 3rd edition , 1976 .

[78]  J. Pinoli A contrast definition for logarithmic images in the continuous setting , 1991 .

[79]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[80]  S. S. Stevens Concerning the Psychophysical Power Law , 1964 .

[81]  W. J. McGill,et al.  A study of the near-miss involving Weber’s law and pure-tone intensity discrimination , 1968 .

[82]  Robert A. M. Gregson,et al.  Dead men tell odd simple tales! , 1991, Behavioral and Brain Sciences.

[83]  S. S. Stevens On the psychophysical law. , 1957, Psychological review.

[84]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[85]  G. Ekman Weber's Law and Related Functions , 1959 .

[86]  R. Teghtsoonian,et al.  On the exponents in Stevens' law and the constant in Ekman's law. , 1971, Psychological review.

[87]  S. Hecht,et al.  Size, Shape, and Contrast in Detection of Targets by Daylight Vision. I. Data and Analytical Description1 , 1947 .

[88]  D. Hood,et al.  Psychophysical tests of models of the response function , 1979, Vision Research.

[89]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[90]  S HECHT,et al.  Size, shape, and contrast in detection of targets by daylight vision; data and analytical description. , 1947, Journal of the Optical Society of America.

[91]  R L Gregory Questions of Quanta and Qualia: Does Sensation Make Sense of Matter—Or Does Matter Make Sense of Sensation? Part 1 , 1988, Perception.

[92]  Jan J. Koenderink,et al.  A mechanistic approach to threshold behavior of the visual system , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[93]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[94]  D. Weiss,et al.  The Impossible Dream of Fechner and Stevens , 1981, Perception.

[95]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[96]  D. Jameson,et al.  The perception of brightness and darkness , 1970 .

[97]  Maryellen L. Giger,et al.  Evaluating the EM algorithm for image processing using a human visual fidelity criterion , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[98]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[99]  John Mylopoulos,et al.  Some Results in Computational Topology , 1973, JACM.

[100]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[101]  E C Poulton,et al.  Why unbiased numerical magnitude judgments of the loudness of noise are linear in decibels: A rejoinder to the Teghtsoonians , 1986, Perception & psychophysics.