A heuristic adaptive choice of the threshold for bias-corrected Hill estimators
暂无分享,去创建一个
Björn Vandewalle | Lígia Henriques Rodrigues | B. Vandewalle | M. Ivette Gomes | Lígia Rodrigues | Clara Viseu | C. Viseu | M. Ivette Gomes
[1] J. Beirlant,et al. On univariate extreme value statistics and the estimation of reinsurance premiums , 2006 .
[2] H. Drees. Tail Empirical Processes Under Mixing Conditions , 2002 .
[3] D. Pestana,et al. A simple second-order reduced bias’ tail index estimator , 2007 .
[4] Frederico Caeiro,et al. Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .
[5] J. Teugels,et al. Statistics of Extremes , 2004 .
[6] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[7] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[8] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[9] Nicole A. Lazar,et al. Statistics of Extremes: Theory and Applications , 2005, Technometrics.
[10] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[11] M. Gomes,et al. Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .
[12] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[13] Fernanda Figueiredo,et al. Improved reduced-bias tail index and quantile estimators , 2008 .
[14] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[15] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[16] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[17] Liang Peng,et al. Asymptotically unbiased estimators for the extreme-value index , 1998 .
[18] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[19] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[20] H. Drees. A general class of estimators of the extreme value index , 1998 .