A heuristic adaptive choice of the threshold for bias-corrected Hill estimators

We shall deal with specific classes of the second-order reduced bias extreme value index estimators, devised for heavy tails. In those classes, the second-order parameters in the bias are estimated at a level k 1 of a larger order than that of the level k at which we compute the extreme value index estimator, and by doing this, it is possible to keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator, the maximum-likelihood estimator of the extreme value index γ, under a strict Pareto model. On the basis of an adequate pair of this type of extreme value index estimators, we also provide a heuristic adaptive choice of the threshold in reduced bias estimation and we proceed to an intensive computer simulation that enables us to study, through Monte-Carlo techniques, the behavior of the non-adaptive and adaptive proposed estimators. An illustration of the behavior of these estimators for sets of real data in the fields of finance and insurance is also provided.

[1]  J. Beirlant,et al.  On univariate extreme value statistics and the estimation of reinsurance premiums , 2006 .

[2]  H. Drees Tail Empirical Processes Under Mixing Conditions , 2002 .

[3]  D. Pestana,et al.  A simple second-order reduced bias’ tail index estimator , 2007 .

[4]  Frederico Caeiro,et al.  Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .

[5]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[6]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[7]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[8]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[9]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[10]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[11]  M. Gomes,et al.  Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .

[12]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[13]  Fernanda Figueiredo,et al.  Improved reduced-bias tail index and quantile estimators , 2008 .

[14]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[15]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[16]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[17]  Liang Peng,et al.  Asymptotically unbiased estimators for the extreme-value index , 1998 .

[18]  M. Ivette Gomes,et al.  A new class of semi-parametric estimators of the second order parameter. , 2003 .

[19]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

[20]  H. Drees A general class of estimators of the extreme value index , 1998 .