Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia.

[1]  T. Naoe,et al.  Corrigendum: Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. , 2016, Nature genetics.

[2]  Shinichi Morishita,et al.  Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults , 2016, Nature Genetics.

[3]  Deng Pan,et al.  DGIdb 2.0: mining clinically relevant drug–gene interactions , 2015, Nucleic Acids Res..

[4]  Pui,et al.  Germline Genetic Variation in ETV6 and Risk of Childhood Acute Lymphoblastic Leukemia: a Systematic Genetic Study , 2015, The Lancet. Oncology.

[5]  C. Mullighan,et al.  Acute Lymphoblastic Leukemia in Children. , 2015, The New England journal of medicine.

[6]  L. Wartman A case of me: clinical cancer sequencing and the future of precision medicine , 2015, Cold Spring Harbor molecular case studies.

[7]  Obi L. Griffith,et al.  Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud , 2015, PLoS Comput. Biol..

[8]  Obi L. Griffith,et al.  Optimizing cancer genome sequencing and analysis. , 2015, Cell systems.

[9]  Obi L. Griffith,et al.  Genome Modeling System: A Knowledge Management Platform for Genomics , 2015, PLoS Comput. Biol..

[10]  J. Downing,et al.  PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. , 2015, Blood.

[11]  C. Mullighan,et al.  Genomics in acute lymphoblastic leukaemia: insights and treatment implications , 2015, Nature Reviews Clinical Oncology.

[12]  H. Sakamoto,et al.  A novel recurrent EP300–ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia , 2015, Leukemia.

[13]  Jing Ma,et al.  Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia , 2015, Nature Communications.

[14]  M. Loh,et al.  A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. , 2014, Blood.

[15]  Masato Kimura,et al.  NCBI’s Database of Genotypes and Phenotypes: dbGaP , 2013, Nucleic Acids Res..

[16]  M. Stratton,et al.  RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia , 2014, Nature Genetics.

[17]  Joshua F. McMichael,et al.  DGIdb - Mining the druggable genome , 2013, Nature Methods.

[18]  Rohini Rau-Murthy,et al.  A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia , 2013, Nature Genetics.

[19]  Robert Huether,et al.  The genomic landscape of hypodiploid acute lymphoblastic leukemia , 2013, Nature Genetics.

[20]  A. Ferrando,et al.  Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL , 2013, Nature Medicine.

[21]  Ryan D. Morin,et al.  Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. , 2012, Cancer cell.

[22]  A. Moorman The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. , 2012, Blood reviews.

[23]  E. Froňková,et al.  CREBBP HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia , 2012, Leukemia.

[24]  C. Eckert,et al.  Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  Kevin K Dobbin,et al.  Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. , 2010, Blood.

[26]  R. Arceci Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia , 2010 .

[27]  J. Downing,et al.  Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. , 2010, Blood.

[28]  C. Bloomfield,et al.  The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. , 2009, Blood.

[29]  Leslie L Robison,et al.  Acute lymphoblastic leukaemia , 2018, Radiopaedia.org.

[30]  M. Levis,et al.  Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner , 2006, Leukemia.

[31]  S. Carotta,et al.  Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. , 2006, Genes & development.

[32]  Robert Gentleman,et al.  Gene Expression Profiles of B-lineage Adult Acute Lymphocytic Leukemia Reveal Genetic Patterns that Identify Lineage Derivation and Distinct Mechanisms of Transformation , 2005, Clinical Cancer Research.

[33]  S. Armstrong,et al.  Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. , 2005, Blood.

[34]  R. Foà,et al.  FLT3 inhibition in t(4;11)+ adult acute lymphoid leukaemia , 2005, British journal of haematology.

[35]  Dario Campana,et al.  FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. , 2005, Blood.

[36]  W Hiddemann,et al.  Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients , 2004, Leukemia.

[37]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.