Well-posedness for Semi-relativistic Hartree Equations of Critical Type

We prove local and global well-posedness for semi-relativistic, nonlinear Schrödinger equations $i \partial_t u = \sqrt{-\Delta + m^2} u + F(u)$ with initial data in Hs(ℝ3), $s \geqslant 1/2$. Here F(u) is a critical Hartree nonlinearity that corresponds to Coulomb or Yukawa type self-interactions. For focusing F(u), which arise in the quantum theory of boson stars, we derive global-in-time existence for small initial data, where the smallness condition is expressed in terms of the L2-norm of solitary wave ground states. Our proof of well-posedness does not rely on Strichartz type estimates. As a major benefit from this, our method enables us to consider external potentials of a quite general class.

[1]  E. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[2]  Enno Lenzmann,et al.  Boson Stars as Solitary Waves , 2005, math-ph/0512040.

[3]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[4]  Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation , 2004, math-ph/0409019.

[5]  T. Ozawa,et al.  Nonlinear scattering with nonlocal interaction , 1992 .

[6]  Enno Lenzmann,et al.  Blowup for nonlinear wave equations describing boson stars , 2007 .

[7]  Elliott H. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[8]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[9]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  Guoping Zhang,et al.  Local smoothing property and Strichartz inequality for Schrodinger equations with potentials superquadratic at infinity (スペクトル・散乱理論とその周辺 研究集会報告集) , 2002 .

[12]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[13]  Walter A. Strauss,et al.  Nonlinear Wave Equations , 1990 .

[14]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[15]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[16]  Scattering Theory in the Energy Space for a Class of Hartree Equations , 1998, math/9809183.

[17]  Alexander Elgart,et al.  Mean Field Dynamics of Boson Stars , 2005 .

[18]  M. Kon,et al.  Exact smoothing properties of Schrödinger semigroups , 1996 .

[19]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[20]  E. Lieb,et al.  The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .