Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector).

OBJECTIVE Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes) are dependent on the ambient temperature. RESULTS The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.

[1]  J. Lines,et al.  For a few parasites more: Inoculum size, vector control and strain-specific immunity to malaria. , 1992, Parasitology today.

[2]  H. Yang,et al.  The stabilizing effects of the acquired immunity on the schistosomiasis transmission modeling--the sensitivity analysis. , 1998, Memorias do Instituto Oswaldo Cruz.

[3]  W. Bossert,et al.  The dynamics of Plasmodium falciparum blood-stage infection. , 1997, Journal of theoretical biology.

[4]  P. V. Perkins,et al.  Malaria sporozoite detection by dissection and ELISA to assess infectivity of afrotropical Anopheles (Diptera: Culicidae). , 1990, Journal of medical entomology.

[5]  J. Beier Malaria sporozoites: survival, transmission and disease control. , 1993, Parasitology today.

[6]  O. Mercereau‐Puijalon,et al.  Parasite features impeding malaria immunity: antigenic diversity, antigenic variation and poor immunogenicity. , 1991, Research in immunology.

[7]  Joan L. Aron,et al.  Mathematical modeling of immunity to malaria , 1989 .

[8]  H M Yang,et al.  Acquired immunity of a schistosomiasis transmission model--analysis of the stabilizing effects. , 1999, Journal of theoretical biology.

[9]  E Massad,et al.  The basic reproduction ratio of HIV among intravenous drug users. , 1994, Mathematical biosciences.

[10]  E. Pámpana A textbook of malaria eradication , 1969 .

[11]  R. Ramasamy,et al.  Interactions of human malaria parasites, Plasmodium wVaxand P.falciparum, with the midgut of Anopheles mosquitoes , 1997, Medical and veterinary entomology.

[12]  H. Yang,et al.  The loss of immunity in directly transmitted infections modeling: Effects on the epidemiological parameters , 1998, Bulletin of mathematical biology.

[13]  A. Berman,et al.  Nonnegative matrices in dynamic systems , 1979 .

[14]  R. Snow,et al.  Why do some African children develop severe malaria? , 1991, Parasitology today.

[15]  K. Dietz,et al.  Mathematical models for transmission and control of malaria. , 1988 .

[16]  A. Saul Transmission dynamics of Plasmodium falciparum. , 1996, Parasitology today.

[17]  B. A. Harrison,et al.  Correlation of survival rates of Anopheles dirus A (Diptera: Culicidae) with different infection densities of Plasmodium cynomolgi. , 1986, Bulletin of the World Health Organization.

[18]  L. H. Taylor,et al.  Mixed-genotype infections of the rodent malaria Plasmodium chabaudi are more infectious to mosquitoes than single-genotype infections , 1997, Parasitology.

[19]  S. Gupta,et al.  Antigenic diversity and the transmission dynamics of Plasmodium falciparum. , 1994, Science.

[20]  World malaria situation in 1994. Part II. , 1997, Releve epidemiologique hebdomadaire.

[21]  Y. Rubio-Palis,et al.  Malaria entomological inoculation rates in western Venezuela. , 1992, Acta tropica.

[22]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[23]  J. Beier,et al.  Quantitation of malaria sporozoites in the salivary glands of wild Afrotropical Anopheles , 1991, Medical and veterinary entomology.

[24]  C. Mendis,et al.  Infectivity of Plasmodium vivax and P. falciparum to Anopheles tessellatus; relationship between oocyst and sporozoite development. , 1993, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[25]  R. Sinden,et al.  Plasmodium falciparum gametocytes: their longevity and infectivity , 1977, Parasitology.

[26]  W. Bossert,et al.  The Dynamics ofPlasmodium falciparumBlood-stage Infection , 1997 .

[27]  D. Warrell,et al.  Bruce-Chwatt's essential malariology. , 1993 .

[28]  E Massad,et al.  Acquired immunity on a schistosomiasis transmission model - fitting the data. , 1997, Journal of theoretical biology.

[29]  S. Lal,et al.  Epidemiology and control of malaria , 1999, Indian journal of pediatrics.

[30]  H M Yang,et al.  Assessing the effects of global warming and local social and economic conditions on the malaria transmission. , 2000, Revista de saude publica.

[31]  H M Yang,et al.  The basic reproduction ratio for a model of directly transmitted infections considering the virus charge and the immunological response. , 2000, IMA journal of mathematics applied in medicine and biology.

[32]  H. Hurd,et al.  The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania , 1997, Parasitology.

[33]  Joan L. Aron,et al.  Mathematical modelling of immunity to malaria , 1988 .