Contrail study with ground-based cameras

Abstract. Photogrammetric methods and analysis results for contrails observed with wide-angle cameras are described. Four cameras of two different types (view angle

[1]  J. K. Ayers,et al.  Linear contrail and contrail cirrus properties determined from satellite data , 2013 .

[2]  Simon Unterstrasser,et al.  Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model , 2010 .

[3]  Horst Bischof,et al.  Camera calibration from a single night sky image , 2004, CVPR 2004.

[4]  Ulrich Schumann,et al.  Aircraft type influence on contrail properties , 2013 .

[5]  David Atlas,et al.  Contrails of Small and Very Large Optical Depth , 2009 .

[6]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  M. Taylor,et al.  Two-dimensional spectral analysis of mesospheric airglow image data. , 1997, Applied optics.

[8]  Armin Gruen,et al.  Cloud mapping with ground‐based photogrammetric cameras , 2007 .

[9]  Janet Shields,et al.  Comparison of macroscopic cloud data from ground-based measurements using VIS/NIR and IR instruments at Lindenberg, Germany , 2010 .

[10]  Hermann Mannstein,et al.  Operational detection of contrails from NOAA-AVHRR-data , 1999 .

[11]  M. Lemone,et al.  A Striking Cloud Over Boulder, Colorado: What Is Its Altitude, and Why Does It Matter? , 2013 .

[12]  Hermann Mannstein,et al.  Aircraft induced contrail cirrus over Europe , 2005 .

[13]  H. Jäger,et al.  Contrail observations by ground‐based scanning lidar: Cross‐sectional growth , 1995 .

[14]  Michael A. Earle Vector Solutions for Great Circle Navigation , 2005 .

[15]  W. S. Lewellen,et al.  Large-eddy simulations of the vortex-pair breakup in aircraft wakes , 1996 .

[16]  Janet E. Shields,et al.  Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview. , 2013, Applied optics.

[17]  P. Spurný,et al.  The multiple meteorite fall of Neuschwanstein: Circumstances of the event and meteorite search campaigns , 2004 .

[18]  Kenneth Sassen,et al.  Contrail-Cirrus and Their Potential for Regional Climate Change , 1997 .

[19]  Rabindra Palikonda,et al.  Relating observations of contrail persistence to numerical weather analysis output , 2008 .

[20]  Janet Shields,et al.  Cloud and radiance measurements with the VIS/NIR Daylight Whole Sky Imager at Lindenberg (Germany) , 2005 .

[21]  G. Wendler,et al.  MM5 Contrail Forecasting in Alaska , 2005 .

[22]  P. V. D. Kamp Principles of astrometry , 1967 .

[23]  K. Krüger,et al.  Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes , 2007 .

[24]  U. Schumann On conditions for contrail formation from aircraft exhausts , 1996 .

[25]  Luca Bugliaro,et al.  Ground-based observations for the validation of contrails and cirrus detection in satellite imagery , 2009 .

[26]  B. Mayer,et al.  A Parametric Radiative Forcing Model for Contrail Cirrus , 2012 .

[27]  Klaus Gierens,et al.  Ice supersaturation in the ECMWF integrated forecast system , 2007 .

[28]  David W. Rusch,et al.  The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: morphology on global to local scales , 2009 .

[29]  Michael R. C. Jackson,et al.  Airborne Technology for Distributed Air Traffic Management , 2005, CDC 2005.

[30]  Max Mulder,et al.  Novel Method for Wind Estimation Using Automatic Dependent Surveillance-Broadcast , 2012 .

[31]  B. Luo,et al.  Water activity as the determinant for homogeneous ice nucleation in aqueous solutions , 2000, Nature.

[32]  U. Schumann A contrail cirrus prediction model , 2011 .

[33]  U. Schumann,et al.  Aviation‐induced cirrus and radiation changes at diurnal timescales , 2013 .

[34]  B. Mayer,et al.  Aviation induced diurnal North Atlantic cirrus cover cycle , 2012 .

[35]  Ulrich Schumann,et al.  Contrail ice particles in aircraft wakes and their climatic importance , 2013 .