Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images

[1]  O. Mutanga,et al.  Mapping leaf nitrogen and carbon concentrations of intact and fragmented indigenous forest ecosystems using empirical modeling techniques and WorldView-2 data , 2017 .

[2]  Cibele Hummel do Amaral,et al.  Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations , 2017 .

[3]  Ingo Steinwart,et al.  liquidSVM: A Fast and Versatile SVM package , 2017, ArXiv.

[4]  O. Phillips,et al.  Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions , 2017, Carbon balance and management.

[5]  G. Asner,et al.  Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation , 2017, Science.

[6]  Michael A. Lefsky,et al.  Review of studies on tree species classification from remotely sensed data , 2016 .

[7]  Sarah J. Graves,et al.  A hyperspectral image can predict tropical tree growth rates in single-species stands. , 2016, Ecological applications : a publication of the Ecological Society of America.

[8]  Neill Prohaska,et al.  Leaf flush drives dry season green-up of the Central Amazon , 2016 .

[9]  B. Hérault,et al.  Environmental control of natural gap size distribution in tropical forests , 2016 .

[10]  Carola-Bibiane Schönlieb,et al.  Individual Tree Species Classification From Airborne Multisensor Imagery Using Robust PCA , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  P. Couteron,et al.  Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas , 2016, Trees.

[12]  Y. Shimabukuro,et al.  Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data , 2016 .

[13]  Carlos Roberto de Souza Filho,et al.  Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil , 2015 .

[14]  Duccio Rocchini,et al.  Will remote sensing shape the next generation of species distribution models? , 2015 .

[15]  C. A. Mücher,et al.  Environmental science: Agree on biodiversity metrics to track from space , 2015, Nature.

[16]  Paulo I. Prado,et al.  How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys , 2015, Biodiversity and Conservation.

[17]  Moses Azong Cho,et al.  Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as case study , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[18]  David Kenfack,et al.  An estimate of the number of tropical tree species , 2015, Proceedings of the National Academy of Sciences.

[19]  M. Keller,et al.  Seeing the forest beyond the trees , 2015 .

[20]  Ruiliang Pu,et al.  Evaluation of Atmospheric Correction Methods in Identifying Urban Tree Species With WorldView-2 Imagery , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Kalle Ruokolainen,et al.  Hyperdominance in Amazonian forest carbon cycling , 2015, Nature Communications.

[22]  B. S. Tan,et al.  Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data , 2015, PloS one.

[23]  J. Terborgh,et al.  Long-term decline of the Amazon carbon sink , 2015, Nature.

[24]  Jocelyn Chanussot,et al.  On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images , 2015 .

[25]  K. Nikolakopoulos,et al.  Quality assessment of ten fusion techniques applied on Worldview-2 , 2015 .

[26]  George C. Hurtt,et al.  An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems , 2014 .

[27]  Roberta E. Martin,et al.  Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region. , 2014, The New phytologist.

[28]  Daniel Sabatier,et al.  Estimating tropical tree diversity indices from forestry surveys: A method to integrate taxonomic uncertainty , 2014 .

[29]  J. Féret,et al.  Mapping tropical forest canopy diversity using high‐fidelity imaging spectroscopy. , 2014, Ecological applications : a publication of the Ecological Society of America.

[30]  Karen E. Joyce,et al.  Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs , 2014, Remote. Sens..

[31]  R. Valentini,et al.  Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data , 2014, PloS one.

[32]  Lars T. Waser,et al.  Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality , 2014, Remote. Sens..

[33]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[34]  L. Blanc,et al.  Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon , 2014 .

[35]  Gregory Asner,et al.  Improving Remote Species Identification through Efficient Training Data Collection , 2014, Remote. Sens..

[36]  R. Valentini,et al.  Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data , 2014 .

[37]  B. Manly,et al.  Forest destructuring as revealed by the temporal dynamics of fundamental species - Case study of Santa Genebra Forest in Brazil , 2014 .

[38]  Liviu Theodor Ene,et al.  Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data , 2014 .

[39]  Onisimo Mutanga,et al.  Investigating the Capability of Few Strategically Placed Worldview-2 Multispectral Bands to Discriminate Forest Species in KwaZulu-Natal, South Africa , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[41]  Gregory Asner,et al.  Tree Species Discrimination in Tropical Forests Using Airborne Imaging Spectroscopy , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[42]  A. Oliveira,et al.  Local plant species delimitation in a highly diverse Amazonian forest: do we all see the same species? , 2013 .

[43]  Laura L. Hess,et al.  Landscape-scale variation in structure and biomass of Amazonian seasonally flooded and unflooded forests , 2012 .

[44]  Moses Azong Cho,et al.  Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system , 2012 .

[45]  Clement Atzberger,et al.  Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data , 2012, Remote. Sens..

[46]  R. Pu,et al.  A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species , 2012 .

[47]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[48]  Z. A. Latif,et al.  Determination of tree species using Worldview-2 data , 2012, 2012 IEEE 8th International Colloquium on Signal Processing and its Applications.

[49]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[50]  Yinghai Ke,et al.  A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing , 2011 .

[51]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[52]  D. Barthélémy,et al.  Crown fragmentation assessment in tropical trees: Method, insights and perspectives , 2011 .

[53]  Robert Nasi,et al.  Detecting large-scale diversity patterns in tropical trees: Can we trust commercial forest inventories? , 2011 .

[54]  L. Blanc,et al.  Contrasting above‐ground biomass balance in a Neotropical rain forest , 2010 .

[55]  Reyer Zwiggelaar,et al.  Combining Texture and Hyperspectral Information for the Classification of Tree Species in Australian Savanna Woodlands , 2009 .

[56]  David R. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[57]  J. Terborgh,et al.  Drought Sensitivity of the Amazon Rainforest , 2009, Science.

[58]  Bruno Aiazzi,et al.  A Comparison Between Global and Context-Adaptive Pansharpening of Multispectral Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[59]  R. Rodrigues,et al.  Composição florística da Reserva Municipal de Santa Genebra, Campinas, SP , 2008 .

[60]  M. Keller,et al.  Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties , 2008 .

[61]  D. Holcomb,et al.  Optimizing the High-Pass Filter Addition Technique for Image Fusion , 2007 .

[62]  Terry Caelli,et al.  Hyperspectral discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy levels , 2007 .

[63]  C. Vaughan,et al.  Spatial ecology and conservation of two sloth species in a cacao landscape in limón, Costa Rica , 2007, Biodiversity and Conservation.

[64]  Timothy A. Warner,et al.  Segmentation and classification of high resolution imagery for mapping individual species in a closed canopy, deciduous forest , 2006 .

[65]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[66]  Gail P. Anderson,et al.  Analysis of Hyperion data with the FLAASH atmospheric correction algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[67]  D. Leckie Stand delineation and composition estimation using semi-automated individual tree crown analysis , 2003 .

[68]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[69]  Darius S. Culvenor,et al.  TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery , 2002 .

[70]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[71]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[72]  S. Hubbell,et al.  Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50-ha plots. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[74]  Harold J. Annegarn,et al.  Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds , 1996 .

[75]  J. A. Ratter,et al.  A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns , 1995 .

[76]  Jacob Cohen,et al.  Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. , 1968 .