The Algebra of Holonomic Equations

Summary. In this article algorithmic methods are presented that have essentially been introduced into computer algebra systems like Maple, Mathematica or REDUCE within the last decade. The main ideas are due to Stanley and Zeilberger. Some of them had already been discovered in the last century by Beke, but because of their complexity the underlying algorithms have fallen into oblivion. We give a survey of these techniques, show how they can be used to identify transcendental functions, and present implementations of these algorithms in computer algebra systems.

[1]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[2]  Wolfram Koepf,et al.  Algorithms for m-Fold Hypergeometric Summation , 1995, J. Symb. Comput..

[3]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[4]  Nobuki Takayama,et al.  An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.

[5]  Nobuki Takayama,et al.  Gröbner basis and the problem of contiguous relations , 1989 .

[6]  Volker Strehl,et al.  Binomial Sums and Identities , 1993 .

[7]  I. N. Bernshtein The analytic continuation of generalized functions with respect to a parameter , 1972 .

[8]  Fritz Schwarz,et al.  A factorization algorithm for linear ordinary differential equations , 1989, ISSAC '89.

[9]  Mary Celine Fasenmyer A Note on Pure Recurrence Relations , 1949 .

[10]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[11]  W. Koepf A package on formal power series , 1994 .

[12]  Emanuel Beke,et al.  Die Irreducibilität der homogenen linearen Differentialgleichungen , 1894 .

[13]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[14]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[15]  李幼升,et al.  Ph , 1989 .

[16]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[18]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[19]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[20]  Leon M. Hall,et al.  Special Functions , 1998 .

[21]  J.Fleischer,et al.  Calculation of Feynman diagrams from their small momentum expansion , 1994, hep-ph/9403230.

[22]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[23]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[25]  Frédéric Chyzak,et al.  Holonomic systems and automatic proofs of identities , 1994 .

[26]  André Galligo,et al.  Some algorithmic questions on ideals of differential operators , 1985 .

[27]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[28]  B. Solel Factorization in operator algebras , 1988 .

[29]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[30]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[31]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Nobuki Takayama,et al.  Gröbner basis, integration and transcendental functions , 1990, ISSAC '90.

[33]  Wolfram Koepf,et al.  IDENTITIES FOR FAMILIES OF ORTHOGONAL POLYNOMIALS AND SPECIAL FUNCTIONS , 1997 .

[34]  Wolfram Koepf,et al.  Power Series in Computer Algebra , 1992, J. Symb. Comput..

[35]  E. Beke Die symmetrischen Functionen bei den linearen homogenen Differentialgleichungen , 1894 .

[36]  Herbert Melenk,et al.  REDUCE package NCPOLY: Computation in non-commutative polynomial ideals , 1994 .

[37]  Doron Zeilberger,et al.  Three Recitations on Holonomic Systems and Hypergeometric Series , 1994, J. Symb. Comput..

[38]  I. N. Bernshtein Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients , 1971 .

[39]  Doron Zeilberger,et al.  The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..