Adaptive LOD editing of quad meshes

We present a method for editing the LOD of quad meshes, which supports both adaptive refinement and adaptive coarsening. Starting at a base mesh, we generate a quad-dominant mesh which is consistent with the Catmull-Clark subdivision. Consistency is both topological and geometrical: an adaptively subdivided mesh coincides with the uniformly subdivided mesh wherever the level of subdivision is uniform, and the limit surface is the same. Subdivided meshes contain a majority of quad elements and a moderate amount of triangles and pentagons in the regions of transition across different levels of detail. Topological LOD editing is controlled with local conforming operators, which support both mesh refinement and mesh coarsening and work on a plain mesh without the need of cumbersome hierarchical data structures.

[1]  Heinrich Müller,et al.  Adaptive subdivision curves and surfaces , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[2]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[3]  Jos Stam,et al.  A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.

[4]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[5]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[6]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[7]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[8]  Leif Kobbelt,et al.  Direct anisotropic quad-dominant remeshing , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[9]  Anjul Patney,et al.  Real-time Reyes-style adaptive surface subdivision , 2008, SIGGRAPH 2008.

[10]  Günther Greiner,et al.  A Sub-Atomic Subdivision Approach , 2001, VMV.

[11]  Jos Stam,et al.  Evaluation of Loop Subdivision Surfaces , 2010 .

[12]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[13]  Daniele Panozzo,et al.  RGB Subdivision , 2009, IEEE Transactions on Visualization and Computer Graphics.

[14]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[15]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[16]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[17]  Faramarz F. Samavati,et al.  Incremental subdivision for triangle meshes , 2007, Int. J. Comput. Sci. Eng..

[18]  Daniele Panozzo,et al.  Interpolatory Adaptive Subdivision for Mesh LOD Editing , 2009, GRAPP.

[19]  Charles T. Loop,et al.  Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.

[20]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[21]  Charles T. Loop,et al.  Real-time view-dependent rendering of parametric surfaces , 2009, I3D '09.

[22]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[23]  Jörg Peters,et al.  Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets , 2008, Comput. Graph. Forum.

[24]  Dominique Bechmann,et al.  Extension of half-edges for the representation of multiresolution subdivision surfaces , 2009, The Visual Computer.

[25]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[26]  Kunio Kondo,et al.  Adaptive Refinements in Subdivision Surfaces? , 1999, Eurographics.

[27]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[28]  D. Zorin,et al.  4-8 Subdivision , 2001 .