Averaging techniques yield reliable a posteriori finite element error control for obstacle problems
暂无分享,去创建一个
[1] WENBIN LIU,et al. MOVING MESH FINITE ELEMENT APPROXIMATIONS FOR VARIATIONAL INEQUALITY I: STATIC OBSTACLE PROBLEM , 2000 .
[2] I. Babuska,et al. The finite element method and its reliability , 2001 .
[3] Carsten Carstensen,et al. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..
[4] Andreas Veeser. On a posteriori error estimation for constant obstacle problems , 2001 .
[5] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.
[6] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[7] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .
[8] Andreas Veeser,et al. Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..
[9] J. Rodrigues. Obstacle Problems in Mathematical Physics , 1987 .
[10] Ricardo H. Nochetto,et al. Positivity preserving finite element approximation , 2002, Math. Comput..
[11] Carsten Carstensen,et al. Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.
[12] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[13] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[14] W. Hager. Review: R. Glowinski, J. L. Lions and R. Trémolières, Numerical analysis of variational inequalities , 1983 .
[15] Heribert Blum,et al. Weighted Error Estimates for Finite Element Solutions of Variational Inequalities , 2000, Computing.
[16] L. Evans. Measure theory and fine properties of functions , 1992 .
[17] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[18] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[19] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[20] Carsten Carstensen,et al. Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .
[21] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[22] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[23] Carsten Carstensen,et al. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..
[24] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[25] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[26] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[27] Carsten Carstensen,et al. Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .
[28] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[29] R. Kornhuber. Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .
[30] Charles M. Elliott,et al. On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem , 1981 .
[31] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[32] R. Glowinski,et al. Numerical Analysis of Variational Inequalities , 1981 .
[33] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[34] R. S. Falk. Error estimates for the approximation of a class of variational inequalities , 1974 .