Averaging techniques yield reliable a posteriori finite element error control for obstacle problems

Summary.The reliability of frequently applied averaging techniques for a posteriori error control has recently been established for a series of finite element methods in the context of second-order partial differential equations. This paper establishes related reliable and efficient a posteriori error estimates for the energy-norm error of an obstacle problem on unstructured grids as a model example for variational inequalities. The surprising main result asserts that the distance of the piecewise constant discrete gradient to any continuous piecewise affine approximation is a reliable upper error bound up to known higher order terms, consistency terms, and a multiplicative constant.

[1]  WENBIN LIU,et al.  MOVING MESH FINITE ELEMENT APPROXIMATIONS FOR VARIATIONAL INEQUALITY I: STATIC OBSTACLE PROBLEM , 2000 .

[2]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[3]  Carsten Carstensen,et al.  All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..

[4]  Andreas Veeser On a posteriori error estimation for constant obstacle problems , 2001 .

[5]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[6]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[7]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .

[8]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[9]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[10]  Ricardo H. Nochetto,et al.  Positivity preserving finite element approximation , 2002, Math. Comput..

[11]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[12]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[13]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[14]  W. Hager Review: R. Glowinski, J. L. Lions and R. Trémolières, Numerical analysis of variational inequalities , 1983 .

[15]  Heribert Blum,et al.  Weighted Error Estimates for Finite Element Solutions of Variational Inequalities , 2000, Computing.

[16]  L. Evans Measure theory and fine properties of functions , 1992 .

[17]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[18]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[22]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[23]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[24]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[25]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[26]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[27]  Carsten Carstensen,et al.  Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .

[28]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[29]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[30]  Charles M. Elliott,et al.  On the Finite Element Approximation of an Elliptic Variational Inequality Arising from an Implicit Time Discretization of the Stefan Problem , 1981 .

[31]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[32]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[33]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[34]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .