On critical exponents in fixed points of non-erasing morphisms

Let @S be an alphabet of size t, let f:@S^*->@S^* be a non-erasing morphism, let w be an infinite fixed point of f, and let E(w) be the critical exponent of w. We prove that if E(w) is finite, then for a uniform f it is rational, and for a non-uniform f it lies in the field extension Q[r,@l"1,...,@l"@?], where r,@l"1,...,@l"@? are the eigenvalues of the incidence matrix of f. In particular, E(w) is algebraic of degree at most t. Under certain conditions, our proof implies an algorithm for computing E(w).

[1]  Jeffrey Shallit,et al.  Every real number greater than 1 is a critical exponent , 2007, Theor. Comput. Sci..

[2]  Giuseppe Pirillo,et al.  Fractional powers in Sturmian words , 2001, Theor. Comput. Sci..

[3]  Aldo de Luca,et al.  Special factors, periodicity, and an application to Sturmian words , 2000, Acta Informatica.

[4]  Filippo Mignosi,et al.  If a D0L Language is k-Power Free then it is Circular , 1993, ICALP.

[5]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[6]  David Damanik,et al.  The Index of Sturmian Sequences , 2002, Eur. J. Comb..

[7]  Brigitte Mosse,et al.  Properties of words and recognizability of fixed points of a substitution , 1992 .

[8]  Friedrich Otto,et al.  Repetitiveness of languages generated by morphisms , 2000, Theor. Comput. Sci..

[9]  Filippo Mignosi,et al.  Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..

[10]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[11]  Julien Cassaigne An Algorithm to Test if a Given Circular HDOL-Language Avoids a Pattern , 1994, IFIP Congress.

[12]  Dalia Krieger,et al.  On Critical Exponents in Fixed Points of Binary k-Uniform Morphisms , 2006, STACS.

[13]  Jean Berstel,et al.  On the Index of Sturmian Words , 1999, Jewels are Forever.

[14]  G. Rozenberg,et al.  Repetition of Subwords in DOL Languages , 1984, Inf. Control..

[15]  Drew Vandeth,et al.  Sturmian words and words with a critical exponent , 2000, Theor. Comput. Sci..

[16]  Zhi-Ying Wen,et al.  Some properties of the factors of Sturmian sequences , 2003, Theor. Comput. Sci..

[17]  J. Berstel Axel Thue''s papers on repetitions in words: a translation. In: Publications du LaCIM, vol. 20. U , 1992 .

[18]  G. Paun,et al.  Jewels are Forever , 1999, Springer Berlin Heidelberg.