Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates.

The response of optical metasurfaces is usually narrowband, and mechanisms to increase their bandwidth often clash with causality and passivity constraints of materials. Here we are able to theoretically and experimentally demonstrate that broadband, strong polarization conversion and quarter-wave plate functionality may be achieved using a single, ultrathin planar metasurface in the visible regime. Our realized sample is based on interleaved silver nanorods with properly tailored frequency dispersion that introduce an abrupt flat 90° phase shift for orthogonal polarizations over a thickness of few tens of nanometers, achieving achromatic quarter-wave plate behavior covering a good portion of the visible spectrum. Analogous design principles are extended to cover the entire visible spectrum and beyond.

[1]  Xiang Zhang,et al.  Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations , 2008 .

[2]  Nonlocal homogenization model for a periodic array of epsilon-negative rods. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[4]  C. David,et al.  Bilayer Al wire-grids as broadband and high-performance polarizers. , 2006, Optics express.

[5]  N. Engheta,et al.  Homogenization of plasmonic metasurfaces modeled as transmission-line loads , 2011 .

[6]  M. Wegener,et al.  Strong optical activity from twisted-cross photonic metamaterials. , 2009, Optics letters.

[7]  Alexander G. Cheroske,et al.  Polarization Vision and Its Role in Biological Signaling1 , 2003, Integrative and comparative biology.

[8]  Morten Willatzen,et al.  Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. , 2011, Optics letters.

[9]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[10]  A. Lakhtakia,et al.  Biologically inspired achromatic waveplates for visible light. , 2011, Nature communications.

[11]  Anna N Yaroslavsky,et al.  Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging. , 2003, The Journal of investigative dermatology.

[12]  Maria Kafesaki,et al.  Negative refractive index due to chirality , 2009, 0907.1121.

[13]  E. E. García-Guerrero,et al.  Structured Surfaces as Optical Metamaterials: Frontmatter , 2011 .

[14]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.

[15]  A. Alú,et al.  Causality relations in the homogenization of metamaterials , 2011 .

[16]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[17]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[18]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[19]  J. Lythgoe,et al.  Polarized Light and Underwater Vision , 1967, Nature.

[20]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[21]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[22]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[23]  Federico Capasso,et al.  Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy , 2012, Proceedings of the National Academy of Sciences.

[24]  V. Shalaev Optical negative-index metamaterials , 2007 .

[25]  Feng Chen,et al.  Detection of circular polarization in light scattered from photosynthetic microbes , 2009, Proceedings of the National Academy of Sciences.

[26]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[27]  Y. Fainman,et al.  Form-birefringent metal and its plasmonic anisotropy , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[28]  Kürşat Şendur,et al.  Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures , 2010 .

[29]  Rachid Oussaid,et al.  Enhanced-transmission metamaterials as anisotropic plates , 2011 .

[30]  M Finazzi,et al.  Cross resonant optical antenna. , 2009, Physical review letters.

[31]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[32]  T. Ebbesen,et al.  Miniature plasmonic wave plates. , 2008, Physical review letters.

[33]  Pei-Kuen Wei,et al.  Giant birefringence induced by plasmonic nanoslit arrays , 2009 .

[34]  K. Crozier,et al.  Plasmonic wave plate based on subwavelength nanoslits. , 2011, Optics letters.

[35]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[36]  Nikolay I. Zheludev,et al.  Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures , 2007 .