Modelling of hysteresis using Masing–Bouc-Wen’s framework and search of conditions for the chaotic responses

Abstract In the present work hysteresis is simulated by means of internal variables. It was shown that Masing’s imitating mechanism of the energy dissipation presented in the differential equations of Bouc-Wen’s structure allows to simulate hysteresis from very different fields. The constructed analytical models of different types of hysteresis loops are simple, enable major and minor loops reproducing and provide a high degree of correspondence with experimental data. The models of such structure are convenient for the further investigation. Hysteretic systems under harmonic excitation described by models of such structure may reveal chaotic behaviour. Using an effective algorithm based on analysis of the wandering trajectories [1–4,22,23] , an evolution of chaotic behaviour regions of oscillators with hysteresis is presented in various parametric planes. Substantial influence of a hysteretic dissipation value on the form and location of these regions, and also restraining and generating effects of the hysteretic dissipation on a chaos occurrence are ascertained. Conditions for pinched hysteresis are defined.

[1]  W. Lacarbonara,et al.  Nonclassical Responses of Oscillators with Hysteresis , 2003 .

[2]  Albert C. J. Luo,et al.  A theory for non-smooth dynamic systems on the connectable domains , 2005 .

[3]  Pol D. Spanos,et al.  A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .

[4]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[5]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[6]  Jan Awrejcewicz,et al.  Influence of hysteretic dissipation on chaotic responses , 2005 .

[7]  L. Dupré,et al.  Dynamic hysteresis modelling using feed-forward neural networks , 2003 .

[8]  Hongguang Li,et al.  Chaotic behaviors of a bilinear hysteretic oscillator , 2002 .

[9]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[10]  Jordi Ortín,et al.  Hysteresis in shape-memory alloys , 2002 .

[11]  R. Leine,et al.  Bifurcations in Nonlinear Discontinuous Systems , 2000 .

[12]  Ling Fan,et al.  The vibration control of a flexible linkage mechanism with impact , 2004 .

[13]  Holger Kolsch,et al.  Simulation des mechanischen Verhaltens von Bauteilen mit statischer Hysterese , 1993 .

[14]  Georg Masing,et al.  Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen , 1923 .

[15]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[16]  Davide Bernardini,et al.  Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators , 2005 .

[17]  Jan Awrejcewicz,et al.  Quantifying Smooth and nonsmooth Regular and Chaotic Dynamics , 2005, Int. J. Bifurc. Chaos.

[18]  Bogdan Sapiński,et al.  Analysis of parametric models of MR linear damper , 2003 .

[19]  Stick-Slip Chaotic Oscillations in a Quasi-Autonomous Mechanical System , 2003 .

[20]  A. Visintin Differential models of hysteresis , 1994 .

[21]  P. I. Koltermann,et al.  A modified Jiles method for hysteresis computation including minor loops , 2000 .

[22]  Celso Grebogi,et al.  A direct numerical method for quantifying regular and chaotic orbits , 2004 .

[23]  Bogdan Sapiński Dynamic Characteristics of an Experimental MR Fluid Damper , 2003 .

[24]  Fabrizio Vestroni,et al.  Hysteresis in mechanical systems—modeling and dynamic response , 2002 .

[25]  Claude-Henri Lamarque,et al.  Bifurcation and Chaos in Nonsmooth Mechanical Systems , 2003 .