Modelling of hysteresis using Masing–Bouc-Wen’s framework and search of conditions for the chaotic responses
暂无分享,去创建一个
Claude-Henri Lamarque | Jan Awrejcewicz | Larisa P. Dzyubak | C. Lamarque | J. Awrejcewicz | L. Dzyubak
[1] W. Lacarbonara,et al. Nonclassical Responses of Oscillators with Hysteresis , 2003 .
[2] Albert C. J. Luo,et al. A theory for non-smooth dynamic systems on the connectable domains , 2005 .
[3] Pol D. Spanos,et al. A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .
[4] Y. Wen. Method for Random Vibration of Hysteretic Systems , 1976 .
[5] N. Levinson,et al. A Second Order Differential Equation with Singular Solutions , 1949 .
[6] Jan Awrejcewicz,et al. Influence of hysteretic dissipation on chaotic responses , 2005 .
[7] L. Dupré,et al. Dynamic hysteresis modelling using feed-forward neural networks , 2003 .
[8] Hongguang Li,et al. Chaotic behaviors of a bilinear hysteretic oscillator , 2002 .
[9] Mayergoyz,et al. Mathematical models of hysteresis. , 1986, Physical review letters.
[10] Jordi Ortín,et al. Hysteresis in shape-memory alloys , 2002 .
[11] R. Leine,et al. Bifurcations in Nonlinear Discontinuous Systems , 2000 .
[12] Ling Fan,et al. The vibration control of a flexible linkage mechanism with impact , 2004 .
[13] Holger Kolsch,et al. Simulation des mechanischen Verhaltens von Bauteilen mit statischer Hysterese , 1993 .
[14] Georg Masing,et al. Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen , 1923 .
[15] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[16] Davide Bernardini,et al. Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators , 2005 .
[17] Jan Awrejcewicz,et al. Quantifying Smooth and nonsmooth Regular and Chaotic Dynamics , 2005, Int. J. Bifurc. Chaos.
[18] Bogdan Sapiński,et al. Analysis of parametric models of MR linear damper , 2003 .
[19] Stick-Slip Chaotic Oscillations in a Quasi-Autonomous Mechanical System , 2003 .
[20] A. Visintin. Differential models of hysteresis , 1994 .
[21] P. I. Koltermann,et al. A modified Jiles method for hysteresis computation including minor loops , 2000 .
[22] Celso Grebogi,et al. A direct numerical method for quantifying regular and chaotic orbits , 2004 .
[23] Bogdan Sapiński. Dynamic Characteristics of an Experimental MR Fluid Damper , 2003 .
[24] Fabrizio Vestroni,et al. Hysteresis in mechanical systems—modeling and dynamic response , 2002 .
[25] Claude-Henri Lamarque,et al. Bifurcation and Chaos in Nonsmooth Mechanical Systems , 2003 .