Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method

A finite element solution of the KdV equation is presented. To demonstrate the efficiency of the method two test problems are considered. The numerical solutions of the KdV equation are compared with both the exact solutions and other numerical solutions in the literature. The numerical solutions are found to be in good agreement with the exact solutions.

[1]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  Selçuk Kutluay,et al.  An analytical-numerical method for solving the Korteweg-de Vries equation , 2005, Appl. Math. Comput..

[3]  Karel Rektorys,et al.  The method of discretization in time and partial differential equations , 1982 .

[4]  A. C. Vliegenthart,et al.  On finite-difference methods for the Korteweg-de Vries equation , 1971 .

[5]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[6]  P. M. Prenter Splines and variational methods , 1975 .

[7]  M. E. Alexander,et al.  Galerkin methods applied to some model equations for non-linear dispersive waves , 1979 .

[8]  K. Goda,et al.  On Stability of Some Finite Difference Schemes for the Korteweg-de Vries Equation , 1975 .

[9]  Selçuk Kutluay,et al.  A small time solutions for the Korteweg-de Vries equation , 2000, Appl. Math. Comput..

[10]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[11]  N. Zabusky A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction , 1967 .

[12]  Thiab R. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. 1V. numerical modified Korteweg-de Vries equation , 1988 .