Vortex Cores of Inertial Particles

The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines.

[1]  Helwig Hauser,et al.  Parallel Vectors Criteria for Unsteady Flow Vortices , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[3]  Francesco Picano,et al.  Dynamics of inertial particles in free jets , 2010 .

[4]  J. Hunt Vorticity and vortex dynamics in complex turbulent flows , 1987 .

[5]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[6]  Hans-Christian Hege,et al.  Vortex and Strain Skeletons in Eulerian and Lagrangian Frames , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Maria Vittoria Salvetti,et al.  Simulation of the three-dimensional flow around a square cylinder between parallel walls at moderate Reynolds numbers , 2005 .

[8]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[9]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[10]  Hans-Christian Hege,et al.  Cores of Swirling Particle Motion in Unsteady Flows , 2007, IEEE Transactions on Visualization and Computer Graphics.

[11]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[12]  Tong Zhu,et al.  Numerical Simulation of Hurricane Bonnie (1998). Part I: Eyewall Evolution and Intensity Changes , 2004 .

[13]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[14]  Federico Toschi,et al.  Spatial and velocity statistics of inertial particles in turbulent flows , 2011 .

[15]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[16]  Thomas Ertl,et al.  Automotive Soiling Simulation Based On Massive Particle Tracing , 2001, VisSym.

[17]  Holger Theisel,et al.  Streak Lines as Tangent Curves of a Derived Vector Field , 2010, IEEE Transactions on Visualization and Computer Graphics.

[18]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[19]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[20]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[21]  George Haller,et al.  Where do inertial particles go in fluid flows , 2008 .

[22]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[23]  Roberto Benzi,et al.  Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Berend G. van der Wall,et al.  The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) Inputs - The Joint German/French/Dutch/US Project , 2002 .

[25]  Holger Theisel,et al.  Vortex Analysis in Uncertain Vector Fields , 2012, Comput. Graph. Forum.

[26]  Yaping Shao,et al.  Numerical Modelling of Saltation in the Atmospheric Surface Layer , 1999 .

[27]  Holger Theisel,et al.  Mass‐Dependent Integral Curves in Unsteady Vector Fields , 2013, Comput. Graph. Forum.

[28]  M. Sommerfeld,et al.  Multiphase Flows with Droplets and Particles , 2011 .

[29]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[30]  Hans-Peter Seidel,et al.  Feature Flow Fields in Out-of-Core Settings , 2007, Topology-based Methods in Visualization.

[31]  Tobias Günther,et al.  Numerical Examination of a Model Rotor in Brownout Conditions , 2014 .

[32]  Da‐Lin Zhang,et al.  Impact of the Advanced Microwave Sounding Unit Measurements on Hurricane Prediction , 2002 .

[33]  Leishman,et al.  Mesoscale Sediment Tracking Methodology to Analyze Brownout Cloud Developments , 2010 .

[34]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[35]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[36]  Gerik Scheuermann,et al.  Topological Flow Structures in a Mathematical Model for Rotation-Mediated Cell Aggregation , 2011, Topological Methods in Data Analysis and Visualization.