Entropy, large deviations, and statistical mechanics
暂无分享,去创建一个
I: Large Deviations and Statistical Mechanics.- I. Introduction to Large Deviations.- I.1. Overview.- I.2. Large Deviations for I.I.D. Random Variables with a Finite State Space.- I.3. Levels-1 and 2 for Coin Tossing.- I.4. Levels-1 and 2 for I.I.D. Random Variables with a Finite State Space.- I.S. Level-3: Empirical Pair Measure.- I.6. Level-3: Empirical Process.- I.7. Notes.- I.B. Problems.- II. Large Deviation Property and Asymptotics of Integrals.- II.1. Introduction.- II.2. Levels-1, 2, and 3 Large Deviations for I.I.D. Random Vectors.- II.3. The Definition of Large Deviation Property.- II.4. Statement of Large Deviation Properties for Levels-1, 2, and 3.- II.5. Contraction Principles.- II.6. Large Deviation Property for Random Vectors and Exponential Convergence.- II.7. Varadhan's Theorem on the Asymptotics of Integrals.- II.8. Notes.- II.9. Problems.- III. Large Deviations and the Discrete Ideal Gas.- III.1. Introduction.- III.2. Physics Prelude: Thermodynamics.- III.3. The Discrete Ideal Gas and the Microcanonical Ensemble.- III.4. Thermodynamic Limit, Exponential Convergence, and Equilibrium Values.- III.5. The Maxwell-Boltzmann Distribution and Temperature.- III.6. The Canonical Ensemble and Its Equivalence with the Microcanonical Ensemble.- III.7. A Derivation of a Thermodynamic Equation.- III.8. The Gibbs Variational Formula and Principle.- III.9. Notes.- III.10. Problems.- IV. Ferromagnetic Models on ?.- IV.1. Introduction.- IV.2. An Overview of Ferromagnetic Models.- IV.3. Finite-Volume Gibbs States on ?.- IV.4. Spontaneous Magnetization for the Curie-Weiss Model.- IV.5. Spontaneous Magnetization for General Ferromagnets on ?.- IV.6. Infinite-Volume Gibbs States and Phase Transitions.- IV.7. The Gibbs Variational Formula and Principle.- IV.8. Notes.- IV.9. Problems.- V. Magnetic Models on ?D and on the Circle.- V.1. Introduction.- V.2. Finite-Volume Gibbs States on ?D, D ? 1.- V.3. Moment Inequalities.- V.4. Properties of the Magnetization and the Gibbs Free Energy.- V.5. Spontaneous Magnetization on ?D, D ? 2, Via the Peierls Argument.- V.6. Infinite-Volume Gibbs States and Phase Transitions.- V.7. Infinite-Volume Gibbs States and the Central Limit Theorem.- V.8. Critical Phenomena and the Breakdown of the Central Limit Theorem.- V.9. Three Faces of the Curie-Weiss Model.- V.10. The Circle Model and Random Waves.- V.11. A Postscript on Magnetic Models.- V.12. Notes.- V.13. Problems.- II: Convexity and Proofs of Large Deviation Theorems.- VI. Convex Functions and the Legendre-Fenchel Transform.- VI.1. Introduction.- VI.2. Basic Definitions.- VI.3. Properties of Convex Functions.- VI.4. A One-Dimensional Example of the Legendre-Fenchel Transform.- VI.5. The Legendre-Fenchel Transform for Convex Functions on ?d.- VI.6. Notes.- VI.7. Problems.- VII. Large Deviations for Random Vectors.- VII.1. Statement of Results.- VII.2. Properties of IW.- VII.3. Proof of the Large Deviation Bounds for d = 1.- VII.4. Proof of the Large Deviation Bounds for d ? 1.- VII.5. Level-1 Large Deviations for I.I.D. Random Vectors.- VII.6. Exponential Convergence and Proof of Theorem II.6.3.- VII.7. Notes.- VII.8. Problems.- VIII. Level-2 Large Deviations for I.I.D. Random Vectors.- VIII.1. Introduction.- VIII.2. The Level-2 Large Deviation Theorem.- VIII.3. The Contraction Principle Relating Levels-1 and 2 (d = 1).- VIII.4. The Contraction Principle Relating Levels-1 and 2 (d ? 2).- VIII.5. Notes.- VIII.6. Problems.- IX. Level-3 Large Deviations for I.I.D. Random Vectors.- IX.1. Statement of Results.- IX.2. Properties of the Level-3 Entropy Function.- IX.3. Contraction Principles.- IX.4. Proof of the Level-3 Large Deviation Bounds.- IX.5. Notes.- IX.6. Problems.- Appendices.- Appendix A: Probability.- A.1. Introduction.- A.2. Measurability.- A.3. Product Spaces.- A.4. Probability Measures and Expectation.- A.S. Convergence of Random Vectors.- A.6. Conditional Expectation, Conditional Probability, and Regular Conditional Distribution.- A.7. The Kolmogorov Existence Theorem.- A.8. Weak Convergence of Probability Measures on a Metric Space.- Appendix B: Proofs of Two Theorems in Section II.7.- B.1. Proof of Theorem II.7.1.- B.2. Proof of Theorem II.7.2.- Appendix C: Equivalent Notions of Infinite-Volume Measures for Spin Systems.- C.1. Introduction.- C.2. Two-Body Interactions and Infinite-Volume Gibbs States.- C.3. Many-Body Interactions and Infinite-Volume Gibbs States.- C.4. DLR States.- C.5. The Gibbs Variational Formula and Principle.- C.6. Solution of the Gibbs Variational Formula for Finite-Range Interactions on ?.- Appendix D: Existence of the Specific Gibbs Free Energy.- D.1. Existence Along Hypercubes.- D.2. An Extension.- List of Frequently Used Symbols.- References.- Author Index.