Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides.

Negative transconductance (NTC) devices have been heavily investigated for their potential in low power logical circuit, memory, oscillating, and high-speed switching applications. Previous NTC devices are largely attributed to two working mechanisms: quantum mechanical tunneling, and mobility degradation at high electrical field. Herein we report a systematic investigation of charge transport in multilayer two-dimensional semiconductors (2DSCs) with optimized van der Waals contact and for the first time demonstrate NTC and antibipolar characteristics in multilayer 2DSCs (such as MoS2, WSe2). By varying the measurement temperature, bias voltage, and body thickness, we found the NTC behavior can be attributed to a vertical potential barrier in the multilayer 2DSCs and the competing mechanisms between intralayer lateral transport and interlayer vertical transport, thus representing a new working mechanism for NTC operation. Importantly, this vertical potential barrier arises from inhomogeneous carrier distribution in 2DSC from the near-substrate region to the bulk region, which is in contrast to conventional semiconductors with homogeneous doping defined by bulk dopants. We further show that the unique NTC behavior can be explored for creating frequency doublers and phase shift keying circuits with only one transistor, greatly simplifying the circuit design compared to conventional technology.

[1]  Qiyuan He,et al.  Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. , 2016, Nano letters.

[2]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[3]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[4]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[5]  Dong Uk Lee,et al.  Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures , 2016, Nano Research.

[6]  Yan Wang,et al.  Anti-Ambipolar Field-Effect Transistors Based On Few-Layer 2D Transition Metal Dichalcogenides. , 2016, ACS applied materials & interfaces.

[7]  F. Xia,et al.  Optoelectronic devices based on two-dimensional transition metal dichalcogenides , 2016, Nano Research.

[8]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[9]  Jianbo Yin,et al.  A universal etching-free transfer of MoS2 films for applications in photodetectors , 2015, Nano Research.

[10]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[11]  Hao Wu,et al.  Toward barrier free contact to molybdenum disulfide using graphene electrodes. , 2015, Nano letters.

[12]  X. Duan,et al.  Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide , 2015, Nature Communications.

[13]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[14]  L. Lauhon,et al.  Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. , 2014, Nano letters.

[15]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[16]  Peide D. Ye,et al.  ${\rm MoS}_{2}$ Field-Effect Transistors With Graphene/Metal Heterocontacts , 2014, IEEE Electron Device Letters.

[17]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[18]  Yanrong Li,et al.  Two-dimensional semiconductors with possible high room temperature mobility , 2014, Nano Research.

[19]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[20]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[21]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[22]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[23]  Heung Cho Ko,et al.  Flexible Electronics: Highly Flexible and Transparent Multilayer MoS2 Transistors with Graphene Electrodes (Small 19/2013) , 2013 .

[24]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[25]  J. Appenzeller,et al.  Where does the current flow in two-dimensional layered systems? , 2013, Nano letters.

[26]  X. Duan,et al.  Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene , 2013, Nature Communications.

[27]  J. Appenzeller,et al.  Screening and interlayer coupling in multilayer MoS2 , 2013 .

[28]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[29]  Stefano Sanvito,et al.  Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate , 2013, 1301.2491.

[30]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[31]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[32]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[33]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[34]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[35]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[36]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[37]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[38]  P. Ye,et al.  $\hbox{MoS}_{2}$ Dual-Gate MOSFET With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Top-Gate Dielectric , 2011, IEEE Electron Device Letters.

[39]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[40]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[41]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[42]  S. Deleonibus,et al.  Negative transconductance in double-gate germanium-on-insulator field effect transistors , 2007 .

[43]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[44]  V. R. Balakrishnan,et al.  The origin of low-frequency negative transconductance dispersion in a pseudomorphic HEMT , 2005, cond-mat/0503640.

[45]  Byung-Gook Park,et al.  Negative-differential transconductance characteristics at room temperature in 30-nm square-channel SOI nMOSFETs with a degenerately doped body , 2002 .

[46]  T. Suligoj,et al.  Thermionic emission process in carrier transport in pn homojunctions , 2000, 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No.00CH37099).

[47]  B. Riccò,et al.  MOSFET's negative transconductance at room temperature , 1999 .

[48]  D. Tsui,et al.  Surface resonant tunneling transistor: A new negative transconductance device , 1994 .

[49]  Dimitri A. Antoniadis,et al.  Negative transconductance and negative differential resistance in a grid‐gate modulation‐doped field‐effect transistor , 1989 .

[50]  S. Luryi,et al.  Negative transconductance via gating of the quantum well subbands in a resonant tunneling transistor , 1988 .

[51]  Federico Capasso,et al.  Negative transconductance resonant tunneling field‐effect transistor , 1987 .

[52]  Federico Capasso,et al.  Resonant tunneling of two‐dimensional electrons through a quantum wire: A negative transconductance device , 1985 .

[53]  R. Mansfield,et al.  Electrical Properties of Molybdenite , 1953 .

[54]  Yuchen Du,et al.  MoS2 Field-Effec t Transistors With Graphene/ Metal Heterocontacts , 2014 .

[55]  C. Yang A field-effect quantum tunneling transistor: Observation of negative transconductance and analysis , 1992 .

[56]  S. Thakurta,et al.  Electrical conductivity, thermoelectric power and hall effect in p-type molybdenite (MoS2) crystal , 1983 .