Low-dose prostacyclin has potent capillary permeability-reducing effect in cat skeletal muscle in vivo.

The dose-response effects of intravenous infusion of prostacyclin on capillary permeability (the capillary filtration coefficient technique), hydrostatic capillary pressure, transcapillary filtration, and vascular tone were analyzed in vivo on cat skeletal muscle from a normal and an increased permeability level. Increased permeability was accomplished by intra-arterial infusion of tumor necrosis factor-alpha or histamine. Permeability effects of bradykinin were also analyzed. Prostacyclin decreased capillary permeability by 8% at a dose of 0.1 ng.kg-1.min-1 and at most by 30% below control attained at 2 ng.kg-1.min-1, also with no effect on vascular tone and hydrostatic capillary pressure. The permeability increase by tumor necrosis factor-alpha and histamine (by 54 and 73%) was more than counteracted by the simultaneous infusion of prostacyclin at 2 ng.kg-1.min-1. The vasodilator effect of tumor necrosis factor-alpha was also restituted. Indomethacin (prostacyclin inhibitor)-induced increase in capillary permeability (25%) was more than restituted by prostacyclin at 2 ng.kg-1.min-1. Surprisingly, bradykinin decreased capillary permeability. We conclude that endogenous prostacyclin may be a physiological regulator of capillary permeability and that low-dose prostacyclin infusion may have clinical relevance in states of increased permeability.