Computational Methods Based on the Guaranteed Capture Basin Algorithm

This chapter is devoted to numerical approximation methods for managing replicating portfolios and more complex financial instruments. One aim is to regulate evolutions under uncertainty in order not only to reach a target in finite time but also to fulfill constraints (known as viability constraints) until that time. Considering the portfolio evaluation problem, the target is defined by the payoff function at maturity time, which usually expresses the financial goal to be achieved. Constraints appear when one wants to take into account any limitations on prices, quantities to share, or other restrictive conditions that affect asset prices as well as quantities of time or other characteristics of an agreement. The extension of viability theory to hybrid or impulse systems allows us to evaluate more complex financial instruments. Since reaching a target while remaining in a given set for impulse dynamics can be characterized by a nondeterministic controlled differential equation and a controlled instantaneous reset equation, the set of initial conditions from which a given objective can be reached is computed using the Hybrid Guaranteed Capture Basin Algorithm, which extends the Guaranteed Capture Basin and the Viability Kernel algorithms to more complex dynamic systems. This algorithm can be applied to evaluate options in the presence of barriers or transaction costs, given a lack of observation, or in the frame of Ngarch modeling or other processes of price prevision.

[1]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .

[2]  Vassili N. Kolokoltsov,et al.  Understanding Game Theory: Introduction to the Analysis of Many Agent Systems with Competition and Cooperation , 2010 .

[3]  Alain Bensoussan,et al.  Stochastic equity volatility related to the leverage effect , 1994 .

[4]  Jean-Pierre Aubin,et al.  Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty , 2005 .

[5]  William M. McEneaney,et al.  A Robust Control Framework for Option Pricing , 1997, Math. Oper. Res..

[6]  Warren Bower New directions , 1937 .

[7]  Hélyette Geman,et al.  Pricing and hedging in incomplete markets , 2001 .

[8]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[9]  Xiao-Tian Wang Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model , 2009 .

[10]  Shigeo Muto,et al.  Advances in Dynamic Games , 2005 .

[11]  Geert Jan Olsder,et al.  Differential Game-Theoretic Thoughts on Option Pricing and Transaction Costs , 2000, IGTR.

[12]  G. Haddad,et al.  Monotone viable trajectories for functional differential inclusions , 1981 .

[13]  D. Hobson The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .

[14]  Zheng Li,et al.  A robust control approach to option pricing , 2000 .

[15]  Vassili N. Kolokoltsov,et al.  Game theoretic analysis of incomplete markets: emergence of probabilities, nonlinear and fractional Black-Scholes equations , 2011, Risk Decis. Anal..

[16]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[17]  Vassili N. Kolokoltsov,et al.  Idempotent Structures in Optimization , 2001 .

[18]  N. H. Bingham,et al.  Risk-Neutral Valuation , 1998 .

[19]  G. Shafer,et al.  Probability and Finance: It's Only a Game! , 2001 .

[20]  Salih N. Neftci,et al.  Principles of financial engineering , 2004 .

[21]  Vassili N. Kolokoltsov Measure-valued limits of interacting particle systems with k-nary interactions II. Finite-dimensional limits , 2004 .

[22]  F. Black,et al.  Theory of constant proportion portfolio insurance , 1992 .

[23]  Anatoly N. Kochubei,et al.  Distributed-order calculus: An operator-theoretic interpretation , 2007, 0710.1710.

[24]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[26]  Georges Haddad,et al.  Monotone trajectories of differential inclusions and functional differential inclusions with memory , 1981 .

[27]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[28]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[29]  Alain Bensoussan,et al.  Stochastic equity volatility related to the leverage effect II: valuation of European equity options and warrants , 1995 .

[30]  R. Geske THE VALUATION OF COMPOUND OPTIONS , 1979 .

[31]  David Hobson,et al.  Comparison results for stochastic volatility models via coupling , 2010, Finance Stochastics.

[32]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[33]  Jerzy Zabczyk,et al.  Chance and decision. Stochastic control in discrete time , 2013 .

[34]  J. Bouchaud,et al.  Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management , 2011 .

[35]  Vassili N. Kolokoltsov,et al.  Generalized Continuous-Time Random Walks (CTRW), Subordination by Hitting Times and Fractional Dynamics , 2007, 0706.1928.

[36]  M. Rubinstein. Displaced Diffusion Option Pricing , 1983 .

[37]  Alexandre Ziegler,et al.  A Game Theory Analysis of Options: Corporate Finance and Financial Intermediation in Continuous Time , 2010 .

[38]  A. Bensoussan,et al.  Contrôle impulsionnel et inéquations quasi variationnelles , 1982 .

[39]  Geert Jan Olsder,et al.  Robust Control Approach to Digital Option Pricing:Synthesis Approach , 2009 .

[40]  A. J. Shaiju,et al.  Differential games with continuous, switching and impulse controls , 2005 .

[41]  Vassili N. Kolokoltsov,et al.  Fractional Stable Distributions , 2001 .

[42]  Jean-Paul Laurent,et al.  Hedging CDO Tranches in a Markovian Environment , 2011 .

[43]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[44]  Mohit Dayal,et al.  Option replication with transaction costs: general diffusion limits , 1998 .

[45]  Victor Pavlovich Maslov,et al.  Nonlinear Averages in Economics , 2005 .

[46]  Stéphane Thiery Évaluation d'options "vanilles" et "digitales" dans le modèle de marché à intervalles , 2008 .

[47]  Patrick Saint-Pierre,et al.  Beyond Optimality : Managing Children, Assets, and Consumption over the Life Cycle , 2008 .

[48]  Alain Bensoussan,et al.  Real Options Games in Complete and Incomplete Markets with Several Decision Makers , 2010, SIAM J. Financial Math..

[49]  Pierre Bernhard,et al.  The Robust Control Approach to Option Pricing and Interval Models: An Overview , 2005 .

[50]  David Hobson,et al.  Volatility misspecification, option pricing and superreplication via coupling , 1998 .

[51]  Patrick Saint-Pierre,et al.  Nonlinear Impulse Target Problems under State Constraint: A Numerical Analysis Based on Viability Theory , 2004 .

[52]  H. Föllmer,et al.  Optional decompositions under constraints , 1997 .

[53]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[54]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[55]  Enrico Scalas,et al.  Coupled continuous time random walks in finance , 2006 .

[56]  Naïma El Farouq,et al.  An Impulsive Differential Game Arising in Finance with Interesting Singularities , 2006 .

[57]  P. Samuelson Lifetime Portfolio Selection by Dynamic Stochastic Programming , 1969 .

[58]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[59]  Siu-Ah Ng,et al.  Hypermodels in Mathematical Finance:Modelling via Infinitesimal Analysis , 2003 .

[60]  Monique Jeanblanc,et al.  Hedging of Defaultable Claims , 2004 .

[61]  H. Soner,et al.  There is no nontrivial hedging portfolio for option pricing with transaction costs , 1995 .

[62]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[63]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[64]  J. Aubin Dynamic Economic Theory: A Viability Approach , 1997 .

[65]  Jean-Pierre Aubin,et al.  Path-Dependent Impulse and Hybrid Systems , 2001, HSCC.

[66]  Pierre Bernhard,et al.  Geometry of Optimal Paths around Focal Singular Surfaces in Differential Games , 2005 .

[67]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[68]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[69]  Krzysztof Szajowski,et al.  Advances in dynamic games : applications to economics, finance, optimization, and stochastic control , 2005 .

[70]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[71]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[72]  Pierre Bernhard,et al.  Singular surfaces in differential games an introduction , 1977 .

[73]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[74]  S. Pliska Introduction to Mathematical Finance: Discrete Time Models , 1997 .

[75]  Jean-Pierre Aubin,et al.  Stochastic Invariance for Differential Inclusions , 2000 .

[76]  Jean-Pierre Aubin,et al.  Viabilist and tychastic approaches to guaranteed ALM problem , 2012, Risk Decis. Anal..

[77]  Jean-Pierre Aubin,et al.  Stochastic nagumo's viability theorem , 1995 .

[78]  Rama Cont,et al.  Constant Proportion Portfolio Insurance in Presence of Jumps in Asset Prices , 2007 .

[79]  G. Barles,et al.  Deterministic Minimax Impulse Control , 2010 .

[80]  Jean-Pierre Aubin,et al.  Viability Theory: New Directions , 2011 .

[81]  Salih N. Neftçi,et al.  An Introduction to the Mathematics of Financial Derivatives , 1996 .

[82]  R. Bellman Dynamic programming. , 1957, Science.

[83]  H. Frankowska,et al.  A stochastic filippov theorem , 1994 .

[84]  V. Kolokoltsov Nonlinear Markov Processes and Kinetic Equations , 2010 .

[85]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[86]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[87]  Giuseppe Da Prato,et al.  Invariance of stochastic control systems with deterministic arguments , 2004 .

[88]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[89]  Alexandre Ziegler,et al.  Incomplete Information and Heterogeneous Beliefs in Continuous-time Finance , 2003 .

[90]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[91]  Georges Haddad,et al.  Topological properties of the sets of solutions for functional differential inclusions , 1981 .

[92]  Naïma El Farouq,et al.  Robust Control Approach to Option Pricing: A Representation Theorem and Fast Algorithm , 2007, SIAM J. Control. Optim..

[93]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[94]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[95]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[96]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[97]  P. Saint-Pierre Approximation of the viability kernel , 1994 .

[98]  Michèle Breton,et al.  Dynamic Programming Approach for Valuing Options in the GARCH Model , 2009, Manag. Sci..

[99]  Tamer Basar,et al.  Differential Games and Applications , 1989 .

[100]  J. Aubin Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions. , 1980 .

[101]  Jean-Yves Le Boudec,et al.  A class of mean field interaction models for computer and communication systems , 2008, Perform. Evaluation.

[102]  Rüdiger Frey,et al.  PRICING AND HEDGING OF PORTFOLIO CREDIT DERIVATIVES WITH INTERACTING DEFAULT INTENSITIES , 2008 .

[103]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[104]  Guy Jumarie,et al.  Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio , 2010, Comput. Math. Appl..

[105]  Jean-Pierre Aubin,et al.  The viability theorem for stochastic differential inclusions 2 , 1998 .

[106]  A. Bensoussan,et al.  Stochastic equity volatility and the capital structure of the firm , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[107]  Mark M. Meerschaert,et al.  Correlated continuous time random walks , 2008, 0809.1612.

[108]  Bernard De Meyer,et al.  On the strategic origin of Brownian motion in finance , 2003, Int. J. Game Theory.

[109]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[110]  M. Kelbert,et al.  Fractional random fields associated with stochastic fractional heat equations , 2005, Advances in Applied Probability.

[111]  J. M. Schumacher,et al.  Performance of hedging strategies in interval models , 2005, Kybernetika.

[112]  E. Crück,et al.  Target problems under state constraints for nonlinear controlled impulsive systems , 2002 .

[113]  B. Henry,et al.  Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces. , 2010, Physical review letters.

[114]  I. Dolcetta On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming , 1983 .

[115]  Guy Barles,et al.  Option pricing with transaction costs and a nonlinear Black-Scholes equation , 1998, Finance Stochastics.

[116]  M. Friedman Essays in Positive Economics , 1954 .

[117]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[118]  J. Norris,et al.  Differential equation approximations for Markov chains , 2007, 0710.3269.

[119]  Jean-Pierre Aubin,et al.  Characterization of Stochastic Viability of Any Nonsmooth Set Involving Its Generalized Contingent Curvature , 2003 .

[120]  Jean-Pierre Aubin,et al.  Dynamic Economic Theory , 1997 .

[121]  B. Roorda,et al.  COHERENT ACCEPTABILITY MEASURES IN MULTIPERIOD MODELS , 2005 .

[122]  Vassili N. Kolokoltsov,et al.  Nonexpansive maps and option pricing theory , 1998, Kybernetika.

[123]  Walter Willinger,et al.  Dynamic spanning without probabilities , 1994 .

[124]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[125]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[126]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[127]  Jan Palczewski,et al.  From Discrete to Continuous Time Evolutionary Finance Models , 2008 .

[128]  V. Kolokoltsov Markov Processes, Semigroups and Generators , 2011 .

[129]  Martino Bardi,et al.  Stochastic and Differential Games , 1999 .

[130]  Vassili N. Kolokoltsov,et al.  Pricing of Rainbow Options: Game Theoretic Approach , 2007, IGTR.

[131]  Pierre Bernhard,et al.  Robust Control Approach to Option Pricing, Including Transaction Costs , 2005 .

[132]  J.-P. Aubin,et al.  History Path Dependent Optimal Control and Portfolio Valuation and Management , 2002 .

[133]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[134]  Philippe Jorion Value at Risk , 2001 .

[135]  Stylianos Perrakis,et al.  Derivative Asset Pricing with Transaction Costs: An Extension , 1997 .