A fully-implicit model of the global ocean circulation

With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the sensitivity of steady states to parameters can be investigated efficiently using continuation methods. In addition, the implicit formulation allows for much larger time steps than can be used with explicit models. To demonstrate current capabilities of the implicit global ocean model, we use a relatively low-resolution (4° horizontally and 12 levels vertically) version. For this configuration, we present: (i) an explicit calculation of the bifurcation diagram associated with hysteresis behavior of the ocean circulation and (ii) the scaling behavior of the Atlantic meridional overturning versus the magnitude of the vertical mixing coefficient of heat and salt.

[1]  Michael Ghil,et al.  DAMÉE-NAB: the base experiments , 2000 .

[2]  B. Hicks,et al.  On the Bowen Ratio and Surface Temperature at Sea , 1977 .

[3]  Jeffery R. Scott,et al.  Convective Mixing and the Thermohaline Circulation , 1999 .

[4]  M. England Representing the global-scale water masses in ocean general circulation models , 1993 .

[5]  Stefan Rahmstorf,et al.  The Thermohaline Ocean Circulation: A System with Dangerous Thresholds? , 2000 .

[6]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[7]  H. Dijkstra,et al.  Instability of the Thermohaline Ocean Circulation on Interdecadal Timescales , 2002 .

[8]  Claude Brezinski,et al.  Projection methods for systems of equations , 1997 .

[9]  J. Marotzke,et al.  Instability and multiple steady states in a meridional-plane model of the thermohaline circulation , 1988 .

[10]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[11]  William J. Stewart,et al.  A Simultaneous Iteration Algorithm for Real Matrices , 1981, TOMS.

[12]  Henk A. Dijkstra,et al.  A bifurcation study of the three-dimensional thermohaline ocean circulation: the double-hemispheric case , 2001 .

[13]  J. Toggweiler,et al.  Instability of the thermohaline circulation with respect to mixed boundary conditions: is it really a problem for realistic models? , 1994 .

[14]  Y. Kushnir,et al.  Interdecadal Variations in North Atlantic Sea Surface Temperature and Associated Atmospheric Conditions , 1994 .

[15]  Michael E. Mann,et al.  Observed and Simulated Multidecadal Variability in the Northern Hemisphere , 1999 .

[16]  Frank O. Bryan,et al.  Parameter sensitivity of primitive equation ocean general circulation models , 1987 .

[17]  Martin S. Fridson,et al.  Trends , 1948, Bankmagazin.

[18]  S. Childress,et al.  Topics in geophysical fluid dynamics. Atmospheric dynamics, dynamo theory, and climate dynamics. , 1987 .

[19]  J. Overpeck,et al.  Abrupt Climate Change , 2003, Science.

[20]  N. Edwards,et al.  Multiple thermohaline states due to variable diffusivity in a hierarchy of simple models , 2001 .

[21]  Dale B. Haidvogel,et al.  Numerical Ocean Circulation Modeling , 1999 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  H. Stommel,et al.  Thermohaline Convection with Two Stable Regimes of Flow , 1961 .

[24]  A. Gnanadesikan,et al.  A simple predictive model for the structure of the oceanic pycnocline , 1999, Science.

[25]  A. Weaver,et al.  On the incompatibility of ocean and atmosphere models and the need for flux adjustments , 1996 .

[26]  Fred Wubs,et al.  A fully implicit model of the three-dimensional thermohaline ocean circulation: 685 , 2001 .

[27]  M. Ghil,et al.  Trends, interdecadal and interannual oscillations in global sea-surface temperatures , 1998 .

[28]  M. Vellinga Multiple Equilibria in Ocean Models as a Side Effect of Convective Adjustment , 1998 .

[29]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[30]  E. Sarachik,et al.  Thermohaline Oscillations Induced by Strong Steady Salinity Forcing of Ocean General Circulation Models , 1993 .

[31]  L. Raa Internal variability of the thermohaline ocean circulation , 2003 .

[32]  K. Hasselmann An ocean model for climate variability studies , 1982 .

[33]  S. Rahmstorf Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle , 1995, Nature.

[34]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[35]  Alistair Adcroft,et al.  A New Treatment of the Coriolis Terms in C-Grid Models at Both High and Low Resolutions , 1999 .

[36]  Henk A. Dijkstra,et al.  Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, , 2000 .

[37]  James C. McWilliams Modeling the Oceanic General Circulation , 1996 .

[38]  W. Large,et al.  A Global Ocean Wind Stress Climatology Based on ECMWF Analyses , 1989 .

[39]  J. Overpeck,et al.  Abrupt climate change. , 2004, Science.

[40]  R. Seydel Practical bifurcation and stability analysis : from equilibrium to chaos , 1994 .