Monotone Emulation of Computer Experiments

In statistical modeling of computer experiments, prior information is sometimes available about the underlying function. For example, the physical system simulated by the computer code may be known to be monotone with respect to some or all inputs. We develop a Bayesian approach to Gaussian process modeling capable of incorporating monotonicity information for computer model emulation. Markov chain Monte Carlo methods are used to sample from the posterior distribution of the process given the simulator output and monotonicity information. The performance of the proposed approach in terms of predictive accuracy and uncertainty quantification is demonstrated in a number of simulated examples as well as a real queuing system application.

[1]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[2]  Jerome Sacks,et al.  Choosing the Sample Size of a Computer Experiment: A Practical Guide , 2009, Technometrics.

[3]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[4]  George Wolberg,et al.  Monotonic cubic spline interpolation , 1999, 1999 Proceedings Computer Graphics International.

[5]  T. J. Mitchell,et al.  Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .

[6]  Aki Vehtari,et al.  Gaussian processes with monotonicity information , 2010, AISTATS.

[7]  Jack P. C. Kleijnen,et al.  Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations , 2009, J. Oper. Res. Soc..

[8]  Emanuel Parzen,et al.  Stochastic Processes , 1962 .

[9]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[10]  David B. Dunson,et al.  Bayesian monotone regression using Gaussian process projection , 2013, 1306.4041.

[11]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[12]  H. Dette,et al.  A simple nonparametric estimator of a strictly monotone regression function , 2006 .

[13]  George Michailidis,et al.  Sequential Experiment Design for Contour Estimation From Complex Computer Codes , 2008, Technometrics.

[14]  Xuming He,et al.  Monotone B-Spline Smoothing , 1998 .

[15]  George Michailidis,et al.  Queueing network simulation analysis: developing efficient simulation methodology for complex queueing networks , 2003, WSC '03.

[16]  J. Landes,et al.  Strictly Proper Scoring Rules , 2014 .

[17]  A. Beskos,et al.  On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.

[18]  G. Michailidis,et al.  Queueing and scheduling in random environments , 2004, Advances in Applied Probability.

[19]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[20]  J. Ramsay Estimating smooth monotone functions , 1998 .

[21]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[22]  Derek Bingham,et al.  Prediction and Computer Model Calibration Using Outputs From Multifidelity Simulators , 2012, Technometrics.