Synthetic small inhibiting RNAs: Efficient tools to inactivate oncogenic mutations and restore p53 pathways

Single base pair mutations that alter the function of tumor suppressor genes and oncogenes occur frequently during oncogenesis. The guardian of the genome, p53, is inactivated by point mutation in more than 50% of human cancers. Synthetic small inhibiting RNAs (siRNAs) can suppress gene expression in mammalian cells, although their degree of selectivity might be compromised by an amplification mechanism. Here, we demonstrate that a single base difference in siRNAs discriminates between mutant and WT p53 in cells expressing both forms, resulting in the restoration of WT protein function. Therefore, siRNAs may be used to suppress expression of point-mutated genes and provide the basis for selective and personalized antitumor therapy.

[1]  A. Fersht,et al.  Rescuing the function of mutant p53 , 2001, Nature Reviews Cancer.

[2]  L. Banks,et al.  The Human Papillomavirus E6 protein and its contribution to malignant progression , 2001, Oncogene.

[3]  T. Davison,et al.  p73 and p63 Are Homotetramers Capable of Weak Heterotypic Interactions with Each Other but Not with p53* , 1999, The Journal of Biological Chemistry.

[4]  D. Lane,et al.  Therapeutic exploitation of the p53 pathway. , 2002, Trends in molecular medicine.

[5]  A. Fire,et al.  Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Prives,et al.  p73 Function Is Inhibited by Tumor-Derived p53 Mutants in Mammalian Cells , 1999, Molecular and Cellular Biology.

[7]  K. Kinzler,et al.  p21 is necessary for the p53-mediated G1 arrest in human cancer cells. , 1995, Cancer research.

[8]  A. Kristjuhan,et al.  Tumour associated mutants of p53 can inhibit transcriptional activity of p53 without heterooligomerization , 1998, Oncogene.

[9]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[10]  V. Rotter,et al.  Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. , 2000, Cancer research.

[11]  G. Lozano,et al.  Cyclin E restores p53 activity in contact-inhibited cells , 1995, Molecular and cellular biology.

[12]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[13]  K. Vousden Activation of the p53 tumor suppressor protein. , 2002, Biochimica et biophysica acta.

[14]  C. Prives,et al.  The p53 pathway , 1999, The Journal of pathology.

[15]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[16]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[17]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[18]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[19]  A. Levine,et al.  Physical and Functional Interaction between p53 Mutants and Different Isoforms of p73* , 2000, The Journal of Biological Chemistry.

[20]  T. Tuschl,et al.  Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate , 2001, The EMBO journal.

[21]  Malgorzata Kisielow,et al.  Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. , 2002 .

[22]  K. Nishikura,et al.  A Short Primer on RNAi RNA-Directed RNA Polymerase Acts as a Key Catalyst , 2001, Cell.

[23]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[24]  J. Manfredi,et al.  Multiple roles of the tumor suppressor p53 , 2002, Current opinion in oncology.

[25]  B. Gusterson,et al.  A common polymorphism acts as an intragenic modifier of mutant p53 behaviour , 2000, Nature Genetics.

[26]  T. Aas,et al.  Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients , 1996, Nature Medicine.

[27]  J. Lieberman,et al.  siRNA-directed inhibition of HIV-1 infection , 2002, Nature Medicine.

[28]  Titia Sijen,et al.  On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing , 2001, Cell.

[29]  P. Sharp,et al.  RNA interference--2001. , 2001, Genes & development.

[30]  L. Strong,et al.  Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. , 1990, Science.

[31]  K Weber,et al.  Identification of essential genes in cultured mammalian cells using small interfering RNAs. , 2001, Journal of cell science.

[32]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[33]  K. Kinzler,et al.  Oncogenic forms of p53 inhibit p53-regulated gene expression , 1992 .

[34]  H. Vaucheret,et al.  Transcriptional gene silencing in plants: targets, inducers and regulators. , 2001, Trends in genetics : TIG.

[35]  A. Levine,et al.  Gain of function mutations in p53 , 1993, Nature Genetics.

[36]  J. Bouchard,et al.  Erratum: The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum (Nature Genetics (2002) 32(384-392)) , 2002 .

[37]  Lawrence A. Donehower,et al.  A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53–deficient mice , 1995, Nature Genetics.

[38]  Q. Wei,et al.  RNAi as Random Degradative PCR siRNA Primers Convert mRNA into dsRNAs that Are Degraded to Generate New siRNAs , 2001, Cell.