Optical Response of CVD-Grown ML-WS2 Flakes on an Ultra-Dense Au NP Plasmonic Array

The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical vapour deposition and transferred onto a densely-packed array of plasmonic Au nanoparticles (NPs). The optical response was measured as a function of the thickness of a dielectric spacer intercalated between the two materials and of the system temperature, in the 75–350 K range. We show that a weak interaction is established between WS2 and Au NPs, leading to temperature- and spacer-thickness-dependent coupling between the localized surface plasmon resonance of Au NPs and the WS2 exciton. We suggest that the closely-packed morphology of the plasmonic array promotes a high confinement of the electromagnetic field in regions inaccessible by the WS2 deposited on top. This allows the achievement of direct contact between WS2 and Au while preserving a strong connotation of the properties of the two materials also in the hybrid system.

[1]  M. Canepa,et al.  Local Optical Properties in CVD-Grown Monolayer WS2 Flakes , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[2]  Y. Yang,et al.  Plasmonic hybrids of two-dimensional transition metal dichalcogenides and nanoscale metals: Architectures, enhanced optical properties and devices , 2021 .

[3]  C. Coletti,et al.  Synthesis of Large-Scale Monolayer 1T′-MoTe2 and Its Stabilization via Scalable hBN Encapsulation , 2021, ACS nano.

[4]  R. Blaikie,et al.  Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons , 2020, Nature Communications.

[5]  Zefeng Chen,et al.  Enhancing light‐matter interaction in 2D materials by optical micro/nano architectures for high‐performance optoelectronic devices , 2020 .

[6]  M. Canepa,et al.  Thermoplasmonics of Ag Nanoparticles in a Variable-Temperature Bath , 2020 .

[7]  S. Xiao,et al.  2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications , 2020, Nanophotonics.

[8]  P. Sriram,et al.  Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications. , 2020, Small.

[9]  M. Canepa,et al.  Thermometric Calibration of the Ultrafast Relaxation Dynamics in Plasmonic Au Nanoparticles , 2020, 2104.01166.

[10]  M. Canepa,et al.  Optical dielectric function of two-dimensional WS2 on epitaxial graphene , 2020, 2D Materials.

[11]  S. Xiao,et al.  Strong Light–Matter Interactions Enabled by Polaritons in Atomically Thin Materials , 2020, Advanced Optical Materials.

[12]  Silvia Conti,et al.  Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper , 2019, Nature Communications.

[13]  Jeffrey A. Davis,et al.  Disentangling the effects of doping, strain and disorder in monolayer WS2 by optical spectroscopy , 2019, 2D Materials.

[14]  N. Wu,et al.  A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications , 2019, Nanophotonics.

[15]  Qi Jie Wang,et al.  Strong Plasmon–Exciton Interactions on Nanoantenna Array–Monolayer WS2 Hybrid System , 2019, Advanced Optical Materials.

[16]  M. Canepa,et al.  Interband Transitions Are More Efficient Than Plasmonic Excitation in the Ultrafast Melting of Electromagnetically Coupled Au Nanoparticles , 2019, The Journal of Physical Chemistry C.

[17]  A. Yankovich,et al.  Visualizing spatial variations of plasmon-exciton polaritons at the nanoscale using electron microscopy. , 2019, Nano letters.

[18]  Judy Z. Wu,et al.  Plasmonic Au Nanoparticles on 2D MoS2/Graphene van der Waals Heterostructures for High-Sensitivity Surface-Enhanced Raman Spectroscopy , 2019, ACS Applied Nano Materials.

[19]  W. Jin,et al.  Thermal Redistribution of Exciton Population in Monolayer Transition Metal Dichalcogenides Probed with Plasmon–Exciton Coupling Spectroscopy , 2019, ACS Photonics.

[20]  Ermin Malic,et al.  Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors , 2018, npj 2D Materials and Applications.

[21]  Hyeyoung Ahn,et al.  Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide , 2018, Laser & Photonics Reviews.

[22]  Ziwei Li,et al.  Tailoring MoS2 Valley‐Polarized Photoluminescence with Super Chiral Near‐Field , 2018, Advanced materials.

[23]  Qingsheng Zeng,et al.  Novel Optoelectronic Devices: Transition‐Metal‐Dichalcogenide‐Based 2D Heterostructures , 2018 .

[24]  Cheng-Wei Qiu,et al.  Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. , 2018, ACS nano.

[25]  N. Khlebtsov,et al.  Optical Properties of Gold Nanoparticles , 2017 .

[26]  D. Zahn,et al.  Highly Localized Strain in a MoS2/Au Heterostructure Revealed by Tip-Enhanced Raman Spectroscopy. , 2017, Nano letters.

[27]  J. Lou,et al.  Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe2 Nanostructures , 2017 .

[28]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[29]  L. Lauhon,et al.  Identifying Excitation and Emission Rate Contributions to Plasmon-Enhanced Photoluminescence from Monolayer MoS2 Using a Tapered Gold Nanoantenna , 2017 .

[30]  K. Aydin,et al.  Quantifying Plasmon-Enhanced Light Absorption in Monolayer WS2 Films. , 2017, ACS applied materials & interfaces.

[31]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[32]  Camilla Coletti,et al.  Deterministic patterned growth of high-mobility large-crystal graphene: a path towards wafer scale integration , 2016, 1611.00923.

[33]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[34]  Shicai Xu,et al.  A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS 2 and Ag nanoparticles hybrid system , 2016 .

[35]  Lei Zhang,et al.  Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures , 2016, Nature Communications.

[36]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[37]  M. Canepa,et al.  Plasmonic Color-Graded Nanosystems with Achromatic Subwavelength Architectures for Light Filtering and Advanced SERS Detection. , 2016, ACS applied materials & interfaces.

[38]  P. Ajayan,et al.  Active Light Control of the MoS2 Monolayer Exciton Binding Energy. , 2015, ACS nano.

[39]  Liqin Su,et al.  Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2 , 2015, Nano Research.

[40]  Xiaodong Xu,et al.  Valley excitons in two-dimensional semiconductors , 2015, 1507.08103.

[41]  Ming-Yang Li,et al.  Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry , 2014 .

[42]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[43]  Benxia Li,et al.  Metal/Semiconductor Hybrid Nanostructures for Plasmon‐Enhanced Applications , 2014, Advanced materials.

[44]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[45]  Stefan A Maier,et al.  Two-dimensional crystals: managing light for optoelectronics. , 2013, ACS nano.

[46]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[47]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[48]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[49]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[50]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[51]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[52]  D. Sarid,et al.  Localized surface plasmons , 2010 .

[53]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[54]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .

[55]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .