Irregular Gabor frames and their stability

In this paper we give sufficient conditions for irregular Gabor systems to be frames. We show that for a large class of window functions, every relatively uniformly discrete sequence in R 2 with sufficiently high density will generate a Gabor frame. Explicit frame bounds are given. We also study the stability of irregular Gabor frames and show that every Gabor frame with arbitrary time-frequency parameters is stable if the window function is nice enough. Explicit stability bounds are given.

[1]  V. Bargmann,et al.  On the Completeness of Coherent States , 1971 .

[2]  A. Perelomov On the completeness of a system of coherent states , 1971, math-ph/0210005.

[3]  A. Grossmann,et al.  Proof of completeness of lattice states in the k q representation , 1975 .

[4]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[5]  I. Daubechies,et al.  Frames in the Bargmann Space of Entire Functions , 1988 .

[6]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[7]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[8]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[9]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[10]  K. Seip Density theorems for sampling and interpolation in the Bargmann-Fock space I , 1992, math/9204238.

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  Yurii Lyubarskii Frames in the Bargmann space of entire functions , 1992 .

[13]  C. Chui,et al.  Inequalities of Littlewood-Paley type for frames and wavelets , 1993 .

[14]  K. Gröchenig Irregular sampling of wavelet and short-time Fourier transforms , 1993 .

[15]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[16]  I. Daubechies,et al.  Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .

[17]  J. Ramanathan,et al.  Incompleteness of Sparse Coherent States , 1995 .

[18]  R. A. Zalik,et al.  On the Stability of Frames and Riesz Bases , 1995 .

[19]  O. Christensen Atomic Decomposition via Projective Group Representations , 1996 .

[20]  O. Christensen Moment Problems and Stability Results for Frames with Applications to Irregular Sampling and Gabor Frames , 1996 .

[21]  O. Christensen,et al.  Perturbation of operators and applications to frame theory , 1997 .

[22]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[23]  O. Christensen,et al.  Density of Gabor Frames , 1999 .

[24]  O. Christensen,et al.  Weyl-Heisenberg frames for subspaces of ²() , 2000 .

[25]  H. Feichtinger,et al.  Validity of WH-frame bound conditions depends on Lattice parameters , 2000 .

[26]  O. Christensen Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .

[27]  Wenchang Sun,et al.  On the Stability of Gabor Frames , 2001, Adv. Appl. Math..

[28]  R. Young,et al.  An introduction to non-harmonic Fourier series , 2001 .

[29]  Wenchang Sun,et al.  Irregular wavelet/Gabor frames , 2002 .