On computational Gestalt detection thresholds

The aim of this paper is to show some recent developments of computational Gestalt theory, as pioneered by Desolneux, Moisan and Morel. The new results allow to predict much more accurately the detection thresholds. This step is unavoidable if one wants to analyze visual detection thresholds in the light of computational Gestalt theory. The paper first recalls the main elements of computational Gestalt theory. It points out a precision issue in this theory, essentially due to the use of discrete probability distributions. It then proposes to overcome this issue by using continuous probability distributions and illustrates it on the meaningful alignment detector of Desolneux et al.

[1]  Rafael Grompone von Gioi,et al.  On Straight Line Segment Detection , 2008, Journal of Mathematical Imaging and Vision.

[2]  Julie Delon,et al.  A Nonparametric Approach for Histogram Segmentation , 2007, IEEE Transactions on Image Processing.

[3]  Patrick Bouthemy,et al.  An a contrario Decision Framework for Region-Based Motion Detection , 2006, International Journal of Computer Vision.

[4]  Lionel Moisan,et al.  A Grouping Principle and Four Applications , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jean-Michel Morel,et al.  Computational gestalts and perception thresholds , 2003, Journal of Physiology-Paris.

[6]  Yann Gousseau,et al.  An A Contrario Decision Method for Shape Element Recognition , 2006, International Journal of Computer Vision.

[7]  Lionel Moisan,et al.  Edge Detection by Helmholtz Principle , 2001, Journal of Mathematical Imaging and Vision.

[8]  Lionel Moisan,et al.  A Probabilistic Criterion to Detect Rigid Point Matches Between Two Images and Estimate the Fundamental Matrix , 2004, International Journal of Computer Vision.

[9]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[10]  M. Moeschberger,et al.  Survival Models and Data Analysis , 1980 .

[11]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis , 2008 .

[12]  Laura Igual,et al.  Automatic low baseline stereo in urban areas , 2007 .

[13]  Agnès Desolneux,et al.  Vanishing Point Detection without Any A Priori Information , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Lionel Moisan,et al.  Meaningful Alignments , 2000, International Journal of Computer Vision.

[15]  Julie Delon,et al.  A Unified Framework for Detecting Groups and Application to Shape Recognition , 2007, Journal of Mathematical Imaging and Vision.

[16]  M. Bagnoli,et al.  Log-concave probability and its applications , 2004 .

[17]  U. Grenander On the theory of mortality measurement , 1956 .

[18]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[19]  A. Tamhane,et al.  Multiple Comparison Procedures , 1989 .

[20]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[21]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[22]  A. Robin,et al.  A multiscale multitemporal land cover classification method using a Bayesian approach , 2005, SPIE Remote Sensing.

[23]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[24]  A. Tamhane,et al.  Multiple Comparison Procedures , 2009 .

[25]  Rafael Grompone von Gioi,et al.  Multisegment Detection , 2007, 2007 IEEE International Conference on Image Processing.

[26]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis: A Probabilistic Approach , 2007 .