New Mass Estimates for Massive Binary Systems: A Probabilistic Approach Using Polarimetric Radiative Transfer

Understanding the evolution of massive binary stars requires accurate estimates of their masses. This understanding is critically important because massive star evolution can potentially lead to gravitational-wave sources such as binary black holes or neutron stars. For Wolf–Rayet (WR) stars with optically thick stellar winds, their masses can only be determined with accurate inclination angle estimates from binary systems which have spectroscopic Msini measurements. Orbitally phased polarization signals can encode the inclination angle of binary systems, where the WR winds act as scattering regions. We investigated four Wolf–Rayet + O star binary systems, WR 42, WR 79, WR 127, and WR 153, with publicly available phased polarization data to estimate their masses. To avoid the biases present in analytic models of polarization while retaining computational expediency, we used a Monte Carlo radiative-transfer model accurately emulated by a neural network. We used the emulated model to investigate the posterior distribution of the parameters of our four systems. Our mass estimates calculated from the estimated inclination angles put strong constraints on existing mass estimates for three of the systems, and disagree with the existing mass estimates for WR 153. We recommend a concerted effort to obtain polarization observations that can be used to estimate the masses of WR binary systems and increase our understanding of their evolutionary paths.

[1]  Laurent Drissen,et al.  Polarization Variability among Wolf-Rayet Stars. III. A New Way to Derive Mass-Loss Rates for Wolf-Rayet Stars in Binary Systems , 1988 .

[2]  D. Vartanyan,et al.  Different to the core: the pre-supernova structures of massive single and binary-stripped stars , 2021, Astronomy & Astrophysics.

[3]  R. Ignace,et al.  Polarization simulations of stellar wind bow shock nebulae – II. The case of dust scattering , 2020, 2011.04314.

[4]  E. Gosset,et al.  Red noise and pulsations in evolved massive stars , 2021, Monthly Notices of the Royal Astronomical Society.

[5]  F. Martins,et al.  A new calibration of stellar parameters of Galactic O stars , 2005, astro-ph/0503346.

[6]  U. Toronto,et al.  Polarization simulations of stellar wind bow-shock nebulae – I. The case of electron scattering , 2017, 1712.04958.

[7]  Gopal Vasudevan,et al.  The Polstar High Resolution Spectropolarimetry MIDEX Mission , 2021, Optical Engineering + Applications.

[8]  J. Buchner UltraNest - a robust, general purpose Bayesian inference engine , 2021, J. Open Source Softw..

[9]  H. Sana,et al.  The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud , 2019, Astronomy & Astrophysics.

[10]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey IV: Candidates for isolated high-mass star formation in 30 Doradus , 2012, 1204.3628.

[11]  B. Mason,et al.  THE HIGH ANGULAR RESOLUTION MULTIPLICITY OF MASSIVE STARS , 2008, 0811.0492.

[12]  E. V. Heuvel,et al.  Evidence from high-mass X-ray binaries that Galactic WR components of WR+O binaries end their life with a supernova explosion , 2019, Astronomy & Astrophysics.

[13]  Y. Shao,et al.  NONCONSERVATIVE MASS TRANSFER IN MASSIVE BINARIES AND THE FORMATION OF WOLF–RAYET+O BINARIES , 2016, 1610.04307.

[14]  N. Voshchinnikov,et al.  Effects of grain growth on the interstellar polarization curve , 2014, 1408.4682.

[15]  A. Moffat,et al.  Modelling the colliding-winds spectra of the 19-d WR + OB binary in the massive triple system θ Muscae , 2002 .

[16]  K. Gayley,et al.  The Quadruple Wolf-Rayet System GP Cephei: Spectral Types, Masses, Mass-Loss Rate, and Colliding Winds , 2002 .

[17]  J. Eldridge,et al.  Helium Stars: Towards an Understanding of Wolf-Rayet Evolution , 2016, 1602.06358.

[18]  N. St-Louis,et al.  Modelling the spectra of colliding winds in the Wolf-Rayet WC7+O binaries WR 42 and WR 79 , 2000 .

[19]  J. Monnier,et al.  The First Dynamical Mass Determination of a Nitrogen-rich Wolf–Rayet Star Using a Combined Visual and Spectroscopic Orbit , 2021, 2101.04232.

[20]  Osvaldo A. Martin,et al.  ArviZ a unified library for exploratory analysis of Bayesian models in Python , 2019, J. Open Source Softw..

[21]  Bonn,et al.  The orbit and stellar masses of the archetype colliding-wind binary WR 140 , 2021, 2101.10563.

[22]  K. Nordsieck,et al.  A Comparison of the Well-constrained Geometry of V444 Cygni and Two Possible Analogs: WR 21 and WR 62a , 2019, Research Notes of the AAS.

[23]  J. Brown,et al.  Polarimetric accuracy required for the determination of binary inclinations , 1981 .

[24]  C. Aspin,et al.  The Effect of Orbital Eccentricity on Polarimetric Binary Diagnostics , 1982 .

[25]  P. Bastien,et al.  Polarimetric observations of the WN7 binary CQ Cephei , 1986 .

[26]  O. Absil,et al.  SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION , 2014, 1409.6304.

[27]  Johannes Buchner,et al.  A statistical test for Nested Sampling algorithms , 2014, Statistics and Computing.

[28]  V. Piirola,et al.  First Ever Polarimetric Detection of a Wind-Wind Interaction Region and a Misaligned Flattening of the Wind in the Wolf-Rayet Binary CQ Cephei , 2005 .

[29]  J. Puls,et al.  Mass loss from hot massive stars , 2008, 0811.0487.

[30]  P. Bastien,et al.  Polarization Variability among Wolf-Rayet Stars. II. Linear Polarization as a Complete Sample of Southern Galactic WN Stars , 1987 .

[31]  Patrick van der Smagt,et al.  Dalek: A Deep Learning Emulator for TARDIS , 2020, The Astrophysical Journal Letters.

[32]  A. Chené,et al.  Spectroscopic study of the short-period WN5o + O8.5V binary system WR127 (HD 186943) , 2011 .

[33]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[34]  P. Tuthill,et al.  Two Wolf–Rayet stars at the heart of colliding-wind binary Apep , 2020, Monthly Notices of the Royal Astronomical Society.

[35]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[36]  A. Davis,et al.  An Orbit for the WC7 Wolf-Rayet Binary HD97152 - Comparison with the Single-Line WC7 Star HD156385 , 1981 .

[37]  S. Woosley The Evolution of Massive Helium Stars, Including Mass Loss , 2019, The Astrophysical Journal.

[38]  J. Vink,et al.  Driving classical Wolf-Rayet winds: A Γ- and Z-dependent mass-loss , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  B. Whitney,et al.  The Effect of Multiple Scattering on the Polarization from Binary Star Envelopes. I. Self- and Externally Illuminated Disks , 2003, astro-ph/0307261.

[40]  Jaymie M. Matthews,et al.  Photometric Determination of Orbital Inclinations and Mass Loss Rates for Wolf-Rayet Stars in WR+O Binaries , 1996 .

[41]  J. Vink,et al.  Wolf-Rayet spin at low metallicity and its implication for Black Hole formation channels , 2017, 1703.09857.

[42]  D. Mullan Corotating interaction regions in stellar winds , 1984 .

[43]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[44]  A. Sander,et al.  The Galactic WC and WO stars , 2018, Astronomy & Astrophysics.

[45]  J. Dolan,et al.  Confidence intervals for orbital parameters determined polarimetrically , 1994 .

[46]  G. K. Fox Stellar occultation of polarized light from circumstellar electrons. 4: Detached binary systems , 1994 .

[47]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[48]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[49]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[50]  Johannes Buchner,et al.  Collaborative Nested Sampling: Big Data versus Complex Physical Models , 2017, Publications of the Astronomical Society of the Pacific.

[51]  K. Nordsieck,et al.  Spectropolarimetry of the WR + O Binary WR42 , 2018, 1805.08109.

[52]  Patrick van der Smagt,et al.  Probabilistic Reconstruction of Type Ia Supernova SN 2002bo , 2021, The Astrophysical Journal Letters.

[53]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[54]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[55]  R. Ignace,et al.  Monte Carlo simulations of polarimetric and light variability from corotating interaction regions in hot stellar winds , 2019, Monthly Notices of the Royal Astronomical Society.

[56]  J. Brown,et al.  Bias of polarimetric estimators for binary star inclinations. , 1982 .

[57]  A. Lamberts,et al.  Numerical simulations and infrared spectro-interferometry reveal the wind collision region in γ^2 Velorum , 2017, 1701.01124.

[58]  R. Oudmaijer,et al.  The binary fraction and mass ratio of Be and B stars: a comparative Very Large Telescope/NACO study★ , 2010, 1003.0618.

[59]  V. Piirola,et al.  A Multiwavelength Search for Intrinsic Linear Polarization in Wolf–Rayet Winds , 2019, The Astronomical Journal.

[60]  W. E. Kerzendorf,et al.  A spectral synthesis code for rapid modelling of supernovae , 2014, 1401.5469.

[61]  A. Sander,et al.  Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries , 2016, 1604.01022.