Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach

Evolutionary algorithms (EAs) are often well-suited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a single run. However, the few comparative studies of different methods presented up to now remain mostly qualitative and are often restricted to a few approaches. In this paper, four multiobjective EAs are compared quantitatively where an extended 0/1 knapsack problem is taken as a basis. Furthermore, we introduce a new evolutionary approach to multicriteria optimization, the strength Pareto EA (SPEA), that combines several features of previous multiobjective EAs in a unique manner. It is characterized by (a) storing nondominated solutions externally in a second, continuously updated population, (b) evaluating an individual's fitness dependent on the number of external nondominated points that dominate it, (c) preserving population diversity using the Pareto dominance relationship, and (d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics. The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface. Moreover, SPEA clearly outperforms the other four multiobjective EAs on the 0/1 knapsack problem.

[1]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Joel N. Morse,et al.  Reducing the size of the nondominated set: Pruning by clustering , 1980, Comput. Oper. Res..

[4]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[5]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[6]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[7]  J. Gero,et al.  REDUCING THE PARETO OPTIMAL SET IN MULTICRITERIA OPTIMIZATION(With Applications to Pareto Optimal Dynamic Programming) , 1985 .

[8]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[11]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[12]  Alan S. Perelson,et al.  Genetic Algorithms and the Immune System , 1990, PPSN.

[13]  Paolo Toth,et al.  Algorithms and computer implementations , 1990 .

[14]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[15]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[16]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[17]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[18]  Alan S. Perelson,et al.  Population Diversity in an Immune System Model: Implications for Genetic Search , 1992, FOGA.

[19]  Frank Kursawe,et al.  Evolution Strategies for Vector Optimization , 1992 .

[20]  J. Ringuest Multiobjective Optimization: Behavioral and Computational Considerations , 1992 .

[21]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[22]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[23]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[24]  Alan S. Perelson,et al.  Using Genetic Algorithms to Explore Pattern Recognition in the Immune System , 1993, Evolutionary Computation.

[25]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[26]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[27]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[28]  Zbigniew Michalewicz,et al.  Genetic Algorithms for the 0/1 Knapsack Problem , 1994, ISMIS.

[29]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[30]  R. Spillman Solving large knapsack problems with a genetic algorithm , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[31]  Jan Paredis,et al.  The Symbiotic Evolution of Solutions and Their Representations , 1995, International Conference on Genetic Algorithms.

[32]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[33]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[34]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[35]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[36]  Masatoshi Sakawa,et al.  An Interactive Fuzzy Satisficing Method for Multiobjective Multidimensional 0-1 Knapsack Problems Through Genetic Algorithms , 1996, International Conference on Evolutionary Computation.

[37]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[38]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[39]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[40]  Jürgen Teich,et al.  An evolutionary approach to system-level synthesis , 1997, Proceedings of 5th International Workshop on Hardware/Software Co Design. Codes/CASHE '97.

[41]  Pratyush Sen,et al.  A Multiple Criteria Genetic Algorithm for Containership Loading , 1997, ICGA.

[42]  Manuel Valenzuela-Rendón,et al.  A Non-Generational Genetic Algorithm for Multiobjective Optimization , 1997, ICGA.

[43]  S. Ranji Ranjithan,et al.  The Neighborhood Constraint Method: A Genetic Algorithm-Based Multiobjective Optimization Technique , 1997, ICGA.

[44]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[45]  Tobias Blickle,et al.  Theory of evolutionary algorithms and application to system synthesis , 1997 .

[46]  Jeffrey Horn,et al.  Multicriterion decision making , 1997 .

[47]  António Gaspar-Cunha,et al.  Use of Genetic Algorithms in Multicriteria Optimization to Solve Industrial Problems , 1997, ICGA.

[48]  Jürgen Teich,et al.  System-Level Synthesis Using Evolutionary Algorithms , 1998, Des. Autom. Embed. Syst..

[49]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[50]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[51]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[52]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.