Modelling Ammonium Transporters in Arbuscular Mycorrhiza Symbiosis

The Stochastic Calculus ofWrapped Compartments (SCWC) is a recently proposed variant of the Stochastic Calculus of Looping Sequences (SCLS), a language for the representation and simulation of biological systems. In this work we apply SCWC to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Investigating this kind of symbiosis is considered one of the most promising ways to develop methods to nurture plants in more natural manners, avoiding the complex chemical productions used nowadays to produce artificial fertilizers. In our experiments the passage of NH3 / NH+4 from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behavior of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. Moreover, by comparing the behaviour of LjAMT2;2 with the behaviour of another ammonium transporter which exists in plants, viz. LjAMT1;1, our simulations support an hypothesis about why LjAMT2;2 is so selectively expressed in arbusculated cells.

[1]  Ehud Shapiro,et al.  Cells as Computation , 2003, CMSB.

[2]  Thomas P. Jahn,et al.  NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes , 2005, Pflügers Archiv.

[3]  Y. Shachar-Hill,et al.  Partitioning of Intermediary Carbon Metabolism in Vesicular-Arbuscular Mycorrhizal Leek , 1995, Plant physiology.

[4]  A. Pühler,et al.  The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. , 2003, Molecular plant-microbe interactions : MPMI.

[5]  E. Shapiro,et al.  Cellular abstractions: Cells as computation , 2002, Nature.

[6]  R. Bligny,et al.  Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. , 1992, The Journal of biological chemistry.

[7]  Bogdan Aman,et al.  Type Disciplines for Analysing Biologically Relevant Properties , 2009, Electron. Notes Theor. Comput. Sci..

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[10]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[11]  Martin Guttenberger,et al.  Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots , 2000, Planta.

[12]  M. J. Harrison,et al.  A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004861. , 2002, The Plant Cell Online.

[13]  Jason C. Mills,et al.  DNA microarrays and beyond: completing the journey from tissue to cell , 2001, Nature Cell Biology.

[14]  Maria J Harrison,et al.  Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. , 2007, Plant, cell & environment.

[15]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[16]  Paolo Milazzo,et al.  A Calculus of Looping Sequences for Modelling Microbiological Systems , 2006, Fundam. Informaticae.

[17]  Kamel Barkaoui,et al.  Theoretical Aspects of Computing - ICTAC 2006, Third International Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings , 2006, ICTAC.

[18]  Corrado Priami Transactions on Computational Systems Biology IX , 2008, Trans. Computational Systems Biology.

[19]  Mariangiola Dezani-Ciancaglini,et al.  A Type System for Required/Excluded Elements in CLS , 2009, DCM.

[20]  Paolo Milazzo,et al.  Bisimulation Congruences in the Calculus of Looping Sequences , 2006, ICTAC.

[21]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[22]  P. Milazzo,et al.  Qualitative and Quantitative Formal Modeling of Biological Systems , 2007 .

[23]  Marek Dynowski,et al.  A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1 , 2009, Plant Physiology.

[24]  Damien Blaudez,et al.  Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. , 2006, Trends in plant science.

[25]  P. Lammers,et al.  The long hard road to a completed Glomus intraradices genome. , 2008, The New phytologist.

[26]  Thomas Zeuthen,et al.  Aquaporin homologues in plants and mammals transport ammonia , 2004, FEBS letters.

[27]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[28]  Calin Belta,et al.  Hybrid Modeling and Simulation of Biomolecular Networks , 2001, HSCC.

[29]  Matthew Hannah,et al.  Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. , 2009, The New phytologist.

[30]  S. Tyerman,et al.  Channel‐mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules , 2000, FEBS letters.

[31]  R Ekins,et al.  Microarrays: their origins and applications. , 1999, Trends in biotechnology.

[32]  Masanori Saito,et al.  Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. , 1997, The New phytologist.

[33]  M Schena,et al.  Microarrays: biotechnology's discovery platform for functional genomics. , 1998, Trends in biotechnology.

[34]  H Matsuno,et al.  Hybrid Petri net representation of gene regulatory network. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[35]  Tamir Gonen,et al.  The structure of aquaporins , 2006, Quarterly Reviews of Biophysics.

[36]  B. Hause,et al.  Molecular and cell biology of arbuscular mycorrhizal symbiosis , 2005, Planta.

[37]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[38]  Peter J. Lammers,et al.  Nitrogen transfer in the arbuscular mycorrhizal symbiosis , 2005, Nature.

[39]  J. Knowles Enzyme-catalyzed phosphoryl transfer reactions. , 1980, Annual review of biochemistry.

[40]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[41]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[42]  M. Chiurazzi,et al.  Functional characterization of an ammonium transporter gene from Lotus japonicus. , 2001, Gene.

[43]  Paolo Milazzo,et al.  Stochastic Calculus of Looping Sequences for the Modelling and Simulation of Cellular Pathways , 2009, Trans. Comp. Sys. Biology.

[44]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[45]  B. Alberts,et al.  Molecular Biology of the Cell (Fifth Edition) , 2008 .

[46]  Maurizio Drocco,et al.  Stochastic Calculus of Wrapped Compartments , 2010, QAPL.

[47]  T. Roitsch,et al.  Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. , 2006, Journal of experimental botany.

[48]  S. Tyerman,et al.  Plant aquaporins: multifunctional water and solute channels with expanding roles. , 2002, Plant, cell & environment.

[49]  Ashish Tiwari,et al.  Quantitative and Probabilistic Modeling in Pathway Logic , 2007, 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering.

[50]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[51]  Luisa Lanfranco,et al.  Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. , 2007, Molecular plant-microbe interactions : MPMI.

[52]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.