Deformation Techniques for Sparse Systems
暂无分享,去创建一个
Ariel Waissbein | Pablo Solernó | Guillermo Matera | Gabriela Jeronimo | P. Solernó | G. Matera | Gabriela Jeronimo | A. Waissbein
[1] Ariel Waissbein,et al. Inverting bijective polynomial maps over finite fields , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.
[2] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[3] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[4] A. Robinson. I. Introduction , 1991 .
[5] Patrice Philippon,et al. HAUTEUR NORMALISÉE DES VARIÉTÉS TORIQUES PROJECTIVES , 2007, Journal of the Institute of Mathematics of Jussieu.
[6] Joos Heintz,et al. Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..
[7] J. M. Rojas. Why Polyhedra Matter in Non-Linear Equation Solving , 2002, math/0212309.
[8] Luis M. Pardo,et al. How Lower and Upper Complexity Bounds Meet in Elimination Theory , 1995, AAECC.
[9] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[10] V. Pan,et al. Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.
[11] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[12] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[13] J. Canny,et al. Efficient incremental algorithms for the sparse resultant and the mixed volume , 1995 .
[14] John E. Savage,et al. Models of computation - exploring the power of computing , 1998 .
[15] Grégoire Lecerf,et al. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..
[16] A. G. Kushnirenko,et al. Newton polytopes and the Bezout theorem , 1976 .
[17] Marc Giusti,et al. Lower bounds for diophantine approximations , 1997 .
[18] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[19] Teresa Krick,et al. The Computational Complexity of the Chow Form , 2002, Found. Comput. Math..
[20] Rudolf Lide,et al. Finite fields , 1983 .
[21] J. Maurice Rojas,et al. Solving Degenerate Sparse Polynomial Systems Faster , 1998, J. Symb. Comput..
[22] Grégoire Lecerf,et al. A concise proof of the Kronecker polynomial system solver from scratch , 2008 .
[23] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[24] A. Morgan. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .
[25] 岡 睦雄,et al. Non-degenerate complete intersection singularity , 1997 .
[26] Joos Heintz. On the Computational Complexity of Polynomials and Bilinear Mappings. A Survey , 1987, AAECC.
[27] J. M. Rojas. Algebraic Geometry Over Four Rings and the Frontier to Tractability , 2000, math/0005204.
[28] T. Y. Li. Numerical solution of multivariate polynomial systems by homotopy continuation methods , 2008 .
[29] José L. Balcázar,et al. Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.
[30] Juan Sabia,et al. Bounds for traces in complete intersections and degrees in the Nullstellensatz , 1995, Applicable Algebra in Engineering, Communication and Computing.
[31] Rosita Wachenchauzer,et al. Polynomial equation solving by lifting procedures for ramified fibers , 2004, Theor. Comput. Sci..
[32] J. Maurice Rojas,et al. Counting Affine Roots of Polynomial Systems via Pointed Newton Polytopes , 1996, J. Complex..
[33] Jean-Pierre Dedieu,et al. Condition number analysis for sparse polynomial systems , 1997 .
[34] Walter Baur,et al. The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..
[35] Marc Giusti,et al. The Hardness of Polynomial Equation Solving , 2003, Found. Comput. Math..
[36] Éric Schost,et al. Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..
[37] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[38] J. E. Morais,et al. Lower Bounds for diophantine Approximation , 1996 .
[39] Éric Schost,et al. Tellegen's principle into practice , 2003, ISSAC '03.
[40] Xiaoshen Wang,et al. The BKK root count in Cn , 1996, Math. Comput..
[41] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[42] Luis M. Pardo,et al. Deformation techniques to solve generalised Pham systems , 2004, Theor. Comput. Sci..
[43] Grégoire Lecerf. Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..
[44] C. Hoffmann. Algebraic curves , 1988 .
[45] A. Storjohann. Algorithms for matrix canonical forms , 2000 .
[46] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[47] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[48] Allan Borodin,et al. Time Space Tradeoffs (Getting Closer to the Barrier?) , 1993, ISAAC.
[49] W. Schmidt. Equations over Finite Fields: An Elementary Approach , 1976 .
[50] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[51] Marie-Françoise Roy,et al. Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .
[52] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[53] Marila Lázaro,et al. De la Teoría a la Praxis: la evolución de los cursos sociales y humanísticos en una facultad de ciencias exactas y naturales , 2009 .
[54] Bernd Sturmfels,et al. Bernstein’s theorem in affine space , 1997, Discret. Comput. Geom..
[55] G. Ewald. Combinatorial Convexity and Algebraic Geometry , 1996 .
[56] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[57] Timothy H. McNicholl. Review of "Complexity and real computation" by Blum, Cucker, Shub, and Smale. Springer-Verlag. , 2001, SIGA.
[58] Palaiseau Cedex,et al. Computing Parametric Geometric Resolutions , 2001 .
[59] A. Khovanskii. Newton polyhedra and the genus of complete intersections , 1978 .
[60] J. Verschelde,et al. Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .
[61] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[62] Charles W. Wampler,et al. A product-decomposition bound for Bezout numbers , 1995 .
[63] Patrice Philippon,et al. Géométrie diophantienne et variétés toriques , 2005 .
[64] Gregorio Malajovich,et al. High probability analysis of the condition number of sparse polynomial systems , 2004, Theor. Comput. Sci..
[65] J. E. Morais,et al. Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.
[66] Eugene L. Allgower,et al. Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.
[67] Ronald Cools,et al. Mixed-volume computation by dynamic lifting applied to polynomial system solving , 1996, Discret. Comput. Geom..
[68] Xing Li,et al. Finding Mixed Cells in the Mixed Volume Computation , 2001, Found. Comput. Math..
[69] Joachim von zur Gathen,et al. Parallel Arithmetic Computations: A Survey , 1986, MFCS.
[70] Bernd Sturmfels,et al. Product formulas for resultants and Chow forms , 1993 .
[71] Andrew J. Sommese,et al. The numerical solution of systems of polynomials - arising in engineering and science , 2005 .