Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields

Let $Q$ be a nondegenerate quadratic form on a vector space $V$ of even dimension $n$ over a number field $F$. Via the circle method or automorphic methods one can give good estimates for smoothed sums over the number of zeros of the quadratic form whose coordinates are of size at most $X$ (properly interpreted). For example, when $F=\mathbb{Q}$ and $\dim V>4$ Heath-Brown has given an asymptotic of the form \begin{align} \label{HB:esti} c_1X^{n-2}+O_{Q,\varepsilon,f}(X^{n/2+\varepsilon}) \end{align} for any $\varepsilon>0$. Here $c_1 \in \mathbb{C}$ and $f \in \mathcal{S}(V(\mathbb{R}))$ is a smoothing function. We refine Heath-Brown's work to give an asymptotic of the form $$ c_1X^{n-2}+c_2X^{n/2}+O_{Q,\varepsilon,f}(X^{n/2+\varepsilon-1}) $$ over any number field. Here $c_2 \in \mathbb{C}$. Interestingly the secondary term $c_2$ is the sum of a rapidly decreasing function on $V(\mathbb{R})$ over the zeros of $Q^{\vee}$, the form whose matrix is inverse to the matrix of $Q$. We also prove analogous results in the boundary case $n=4$, generalizing and refining Heath-Brown's work in the case $F=\mathbb{Q}$.

[1]  V. Blomer,et al.  On the Ramanujan conjecture over number fields , 2010, 1003.0559.

[2]  O. O’Meara Introduction to quadratic forms , 1965 .

[3]  Antoine Chambert-Loir Lectures on height zeta functions: At the confluence of algebraic geometry, algebraic number theory, and analysis , 2008, 0812.0947.

[4]  Jayce R. Getz,et al.  A nonabelian trace formula , 2013, 1312.3611.

[5]  W. Schmidt The density of integer points on homogeneous varieties , 1985 .

[6]  P. Sarnak,et al.  Density of integer points on affine homogeneous varieties , 1993 .

[7]  Carlos J. Moreno Advanced Analytic Number Theory: L-Functions , 2007 .

[8]  D. R. Heath-Brown,et al.  A new form of the circle method, and its application to quadratic forms. , 1996 .

[9]  D. R. Heath-Brown The circle method and diagonal cubic forms , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[11]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[12]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .

[13]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[14]  H. Iwaniec,et al.  Bounds for automorphicL-functions , 1993 .

[15]  Jayce R. Getz A summation formula for the Rankin-Selberg monoid and a nonabelian trace formula , 2014, American Journal of Mathematics.

[16]  Hyunsuk Moon A congruence for the Fourier coefficients of a modular form and its application to quadratic forms , 2008 .

[17]  Maureen T. Carroll Geometry , 2017 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[20]  H. Iwaniec,et al.  Bounds for automorphic L–functions. III , 2001 .

[21]  The asymptotic formula in Waring’s problem: Higher order expansions , 2013, Journal für die reine und angewandte Mathematik (Crelles Journal).

[22]  Quadratic Gauss Sums over Finite Commutative Rings , 2002 .

[23]  T. Browning,et al.  Cubic hypersurfaces and a version of the circle method for number fields , 2012, 1207.2385.

[24]  D. Schindler Counting rational points on hypersurfaces and higher order expansions , 2014, 1411.5666.

[25]  D. Kazhdan,et al.  γ-Functions of Representations and Lifting , 2010 .

[26]  L. Lafforgue Noyaux du transfert automorphe de Langlands et formules de Poisson non linéaires , 2013 .

[27]  J. Franke,et al.  Rational points of bounded height on Fano varieties , 1989 .