The paleontology of intergene retrotransposons of maize

[1]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[2]  H. Dooner,et al.  Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. , 1997, The Plant cell.

[3]  B. Gaut,et al.  DNA sequence evidence for the segmental allotetraploid origin of maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Bennetzen,et al.  Gene identification in a complex chromosomal continuum by local genomic cross-referencing. , 1996, The Plant journal : for cell and molecular biology.

[5]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[6]  T. Bestor,et al.  Genetic analysis of genomic methylation patterns in plants and mammals. , 1996, Biological chemistry.

[7]  M T Clegg,et al.  Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Bennetzen,et al.  The contributions of retroelements to plant genome organization, function and evolution. , 1996, Trends in microbiology.

[9]  S. Wessler,et al.  Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Bennetzen,et al.  Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. , 1994, Genome.

[11]  B. Weir,et al.  Detecting substitution-rate heterogeneity among regions of a nucleotide sequence. , 1994, Molecular biology and evolution.

[12]  Sudhir Kumar,et al.  MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers , 1994, Comput. Appl. Biosci..

[13]  B. Gaut,et al.  Molecular evolution of the Adh1 locus in the genus Zea. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Voytas,et al.  copia-like retrotransposons are ubiquitous among plants. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. Flavell,et al.  Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. , 1992, Nucleic acids research.

[16]  M. Grandbastien Retroelements in higher plants. , 1992, Trends in genetics : TIG.

[17]  Wei-Shau Hu,et al.  Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Bennetzen,et al.  Structure and coding properties of Bs1, a maize retrovirus-like transposon. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[20]  E. Selker,et al.  DNA methylation at asymmetric sites is associated with numerous transition mutations. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[22]  M. Freeling,et al.  Exceptionally High Levels of Restriction Site Polymorphism in DNA near the Maize Adh1 Gene. , 1983, Genetics.

[23]  A. Razin,et al.  Sequence specificity of methylation in higher plant DNA , 1981, Nature.

[24]  Philip J. Farabaugh,et al.  Molecular basis of base substitution hotspots in Escherichia coli , 1978, Nature.