Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth

In this paper, we study the multiplicity and concentration of solutions for the following critical fractional Schrodinger–Poisson system: \begin{eqnarray*} \left\{ \begin{array}{ll} \epsilon^{2s}(-\triangle)^{s} {u}+ V(x)u+\phi u =f(u)+|u|^{2^*_{s}-2}u &\mbox{in}\,\,\R^3, \\[2.5mm] \epsilon^{2t}(-\triangle)^{t}{\phi}=u^2 &\mbox{in}\,\, \R^3, \end{array} \right. \end{eqnarray*} where ϵ > 0 is a small parameter, (− △ ) α denotes the fractional Laplacian of order α = s,t ∈ (0,1), where 2 α ∗ 6/3−2α is the fractional critical exponent in Dimension 3; V ∈ C 1 (ℝ 3 ,ℝ + ) and f is subcritical. We first prove that for ϵ > 0 sufficiently small, the system has a positive ground state solution. With minimax theorems and Ljusternik–Schnirelmann theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ϵ . Moreover, each positive solution u ϵ converges to the least energy solution of the associated limit problem and concentrates around a global minimum point of V .

[1]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[2]  Shangjiang Guo,et al.  On ground state solutions for the Schrödinger–Poisson equations with critical growth , 2014 .

[3]  Luis Silvestre,et al.  Holder estimates for solutions of integra-differential equations like the fractional laplace , 2006 .

[4]  Xiaojun Chang,et al.  Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity , 2013 .

[5]  Giusi Vaira,et al.  On Concentration of Positive Bound States for the Schrödinger-Poisson Problem with Potentials , 2008 .

[6]  Xuefeng Wang On concentration of positive bound states of nonlinear Schrödinger equations , 1993 .

[7]  David Ruiz,et al.  Multiple bound states for the Schroedinger-Poisson problem , 2008 .

[8]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[9]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[10]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[11]  Xudong Shang,et al.  Concentrating solutions of nonlinear fractional Schrödinger equation with potentials , 2015 .

[12]  Antonio Azzollini,et al.  On the Schrödinger-Maxwell equations under the effect of a general nonlinear term , 2009, 0904.1557.

[13]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.

[14]  Juncheng Wei,et al.  Concentrating standing waves for the fractional nonlinear Schr\"odinger equation , 2013, 1307.2301.

[15]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  Yang Yang,et al.  On fractional Schrödinger equation in RN with critical growth , 2013 .

[18]  C. O. Alves,et al.  Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^N$ via penalization method , 2015, 1508.03964.

[19]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[20]  Guoyuan Chen,et al.  Concentration phenomenon for fractional nonlinear Schr\"{o}dinger equations , 2013, 1305.4426.

[21]  Enrico Valdinoci,et al.  The Brezis-Nirenberg result for the fractional Laplacian , 2014 .

[22]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2013 .

[23]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2010, 1009.4042.

[24]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[25]  Xiaoming He,et al.  Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations , 2011 .

[26]  Enrico Valdinoci,et al.  A Brezis-Nirenberg result for non-local critical equations in low dimension , 2013 .

[27]  W. Zou,et al.  Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth , 2012 .

[28]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[29]  Jihui Zhang,et al.  Ground states for fractional Schrödinger equations with critical growth , 2014 .

[30]  Shangjiang Guo,et al.  Multiple semiclassical states for coupled Schrödinger-Poisson equations with critical exponential growth , 2015 .

[31]  M. Squassina,et al.  Fractional Schrödinger–Poisson Systems with a General Subcritical or Critical Nonlinearity , 2015, 1503.08765.

[32]  Juncheng Wei,et al.  On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation , 2005, SIAM J. Math. Anal..

[33]  S. Secchi Ground state solutions for nonlinear fractional Schrödinger equations in RN , 2012, 1208.2545.

[34]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[35]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[36]  Jinggang Tan,et al.  The Brezis–Nirenberg type problem involving the square root of the Laplacian , 2011 .

[37]  E. Valdinoci,et al.  Ground states and concentration phenomena for the fractional Schrödinger equation , 2014, 1411.0576.

[38]  A. Cotsiolis,et al.  Best constants for Sobolev inequalities for higher order fractional derivatives , 2004 .

[39]  David Applebaum Levy processes - from probability theory to finance and quantum groups , 2004 .

[40]  E. Valdinoci,et al.  Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum , 2014, 1403.4435.

[41]  David Ruiz,et al.  SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE , 2005 .

[42]  Simone Secchi,et al.  On fractional Schr\"odinger equations in (\mathbb{R}^N) without the Ambrosetti-Rabinowitz condition , 2012, 1210.0755.

[43]  R. Servadei,et al.  A critical fractional equation with concave-convex power nonlinearities , 2013, 1306.3190.

[44]  L. Tian,et al.  Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in $${\mathbb{R}^{3}}$$ , 2013 .

[45]  Jianjun Zhang The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth , 2014 .

[46]  I. Ekeland On the variational principle , 1974 .

[47]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[48]  V. Benci,et al.  Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology , 1994 .