Charge photogeneration in organic solar cells.

In recent years, organic solar cells utilizing π-conjugated polymers have attracted widespread interest in both the academic and, increasingly, the commercial communities. These polymers are promising in terms of their electronic properties, low cost, versatility of functionalization, thin film flexibility, and ease of processing. These factors indicate that organic solar cells, although currently producing relatively low power conversion efficiencies (∼5-7%),1–3 compared to inorganic solar cells, have the potential to compete effectively with alternative solar cell technologies. However, in order for this to be feasible, the efficiencies of organic solar cells need further improvement. This is the focus of extensive studies worldwide. The backbone of a π-conjugated polymer is comprised of a linear series of overlapping pz orbitals that have formed via sp2 hybridization, thereby creating a conjugated chain of delocalized electron density. It is the interaction of these π electrons that dictates the electronic characteristics of the polymer. The energy levels become closely spaced as the delocalization length increases, resulting in a ‘band’ structure somewhat similar to that observed in inorganic solid-state semiconductors. In contrast to the latter, however, the primary photoexcitations in conjugated polymers are bound electron-hole pairs (excitons) rather than free charge carriers; this is largely due to their low dielectric constant and the presence of significant electron-lattice interactions and electron correlation effects.4 In the absence of a mechanism to dissociate the excitons into free charge carriers, the exciton will undergo radiative and nonradiative decay, with a typical exciton lifetime in the range from 100 ps to 1 ns. Achieving efficient charge photogeneration has long been recognized as a vital challenge for molecular-based solar cells. For example, the first organic solar cells were simple single-layer devices based on the pristine polymer and two electrodes of different work function. These devices, based on a Schottky diode structure, resulted in poor photocurrent efficiency.5–7 Relatively efficient photocurrent generation in an organic device was first reported by Tang in 1986,8 employing a vacuum-deposited CuPc/ perylene derivative donor/acceptor bilayer device. The differing electron affinities (and/or ionization potentials) between these two materials created an energy offset at their interface, thereby driving exciton dissociation. However, the efficiency of such bilayer devices is limited by the requirement of exciton diffusion to the donor/acceptor interface, typically requiring film thicknesses less than the optical absorption depth. Organic materials usually exhibit exciton diffusion lengths of ∼10 nm and optical absorption depths of 100 nm, although we note significant progress is now being made with organic materials with exciton diffusion lengths comparable to or exceeding their optical absorption depth.9–12 The observation of ultrafast photoinduced electron transfer13,14 from a conjugated polymer to C60 and the * To whom correspondence should be addressed. E-mail: j.durrant@ imperial.ac.uk. Chem. Rev. 2010, 110, 6736–6767 6736