Two self-dual codes with larger lengths over ℤ9

In this paper, we introduce new definitions of the Gray weight and the Gray map for linear codes over ℤ9 + uℤ9 with u2 = u. Some results on self-dual codes over this ring are investigated. Further, the structural properties of quadratic residue codes are also considered. Two self-dual codes with new parameters [22, 11, 5] and [24, 12, 9] over ℤ9 are obtained.

[1]  Masaaki Harada,et al.  Type II Codes, Even Unimodular Lattices, and Invariant Rings , 1999, IEEE Trans. Inf. Theory.

[2]  Akihiro Munemasa,et al.  On the classification of self-dual [20, 10, 9] codes over GF(7) , 2015, Finite Fields Their Appl..

[3]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[4]  Suat Karadeniz,et al.  Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..

[5]  T. Aaron Gulliver,et al.  MDS and self-dual codes over rings , 2012, Finite Fields Their Appl..

[6]  John N. C. Wong,et al.  Self-dual codes over $$\mathbb{Z}_8$$ and $$\mathbb{Z}_9$$ , 2006 .

[7]  Bahattin Yildiz,et al.  New extremal binary self-dual codes of length 68 from quadratic residue codes over 𝔽2 + u𝔽2 + u2𝔽2 , 2013, Finite Fields Their Appl..

[8]  Bahattin Yildiz,et al.  Quadratic Residue Codes over F_p+vF_p and their Gray Images , 2013, ArXiv.

[9]  Hongwei Liu,et al.  Self-dual codes over commutative Frobenius rings , 2010, Finite Fields Their Appl..

[10]  Steven T. Dougherty,et al.  Cyclic codes over Rk , 2012, Des. Codes Cryptogr..

[11]  Shixin Zhu,et al.  A class of constacyclic codes over Fp+vFp and its Gray image , 2011, Discret. Math..

[12]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[13]  Bijan Taeri QUADRATIC RESIDUE CODES OVER ℤ 9 , 2009 .

[14]  Suat Karadeniz,et al.  Self-dual codes over F2+uF2+vF2+uvF2 , 2010, J. Frankl. Inst..

[15]  Steven T. Dougherty,et al.  Codes over an infinite family of rings with a Gray map , 2014, Des. Codes Cryptogr..

[16]  T. Aaron Gulliver,et al.  On self-dual cyclic codes over finite chain rings , 2014, Des. Codes Cryptogr..

[17]  Jon-Lark Kim,et al.  MDS codes over finite principal ideal rings , 2009, Des. Codes Cryptogr..

[18]  Jose Maria P. Balmaceda,et al.  Mass formula for self-dual codes over Zp2 , 2008, Discret. Math..