Axonal Calcium and Magnesium Homeostasis

[1]  A. Hodgkin,et al.  Active transport of cations in giant axons from Sepia and Loligo , 1955, The Journal of physiology.

[2]  A. Hodgkin,et al.  The after‐effects of impulses in the giant nerve fibres of Loligo , 1956, The Journal of physiology.

[3]  A. Hodgkin,et al.  The effects of injecting ‘energy‐rich’ phosphate compounds on the active transport of ions in the giant axons of Loligo , 1960, The Journal of physiology.

[4]  I. Tasaki,et al.  Methods for perfusing the giant axon of Loligo pealii. , 1961, Acta physiologica Scandinavica.

[5]  A. Hodgkin,et al.  Replacement of the Protoplasm of a Giant Nerve Fibre with Artificial Solutions , 1961, Nature.

[6]  A. Hodgkin,et al.  Replacement of the axoplasm of giant nerve fibres with artificial solutions , 1962, The Journal of physiology.

[7]  Excitability of squid giant axons in the absence of univalent cations in the external medium. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[8]  I. Tasaki,et al.  Effects of Tetrodotoxin on Excitability of Squid Giant Axons in Sodium-Free Media , 1967, Science.

[9]  L. Mullins,et al.  Some Factors Influencing Sodium Extrusion by Internally Dialyzed Squid Axons , 1967, The Journal of general physiology.

[10]  L. Mullins,et al.  Sodium Extrusion by Internally Dialyzed Squid Axons , 1967, The Journal of general physiology.

[11]  M. Blaustein,et al.  A ouabain-insensitive, calcium-sensitive sodium efflux from giant axons of Loligo. , 1967, The Journal of physiology.

[12]  I. Tasaki,et al.  Role of divalent cations in excitation of squid giant axons. , 1967, American Journal of Physiology.

[13]  E. Rojas,et al.  Effect of temperature and metabolic inhibitors on 45Ca outflow from squid giant axons. , 1968, Biochimica et biophysica acta.

[14]  M. Luxoro,et al.  Permeability of the Giant Axon of Dosidicus gigas to Calcium Ions , 1968, The Journal of general physiology.

[15]  R. Keynes,et al.  The ouabain‐sensitive fluxes of sodium and potassium in squid giant axons , 1969, The Journal of physiology.

[16]  A. Hodgkin,et al.  The influence of calcium on sodium efflux in squid axons , 1969, The Journal of physiology.

[17]  B. Katz,et al.  Tetrodotoxin‐resistant electric activity in presynaptic terminals , 1969, The Journal of physiology.

[18]  A. Hodgkin,et al.  The effect of cyanide on the efflux of calcium from squid axons , 1969, The Journal of physiology.

[19]  C. Breemen,et al.  Lanthanum Inhibition of 45Ca Efflux from the Squid Giant Axon , 1970, Nature.

[20]  Effects of intracellular adenosine-5'-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. , 1970 .

[21]  P. F. Baker Sodium-Calcium Exchange Across the Nerve Cell Membrane , 1970 .

[22]  Re-examination of a Supposed Case of Specific Cell Adhesion , 1970, Nature.

[23]  Baker Pf,et al.  Depolarization and calcium entry in squid giant axons. , 1971 .

[24]  A. Crawford,et al.  Mobility and transport of magnesium in squid giant axons , 1972, The Journal of physiology.

[25]  P. F. Baker Transport and metabolism of calcium ions in nerve. , 1972, Progress in biophysics and molecular biology.

[26]  E. B. Ridgway,et al.  Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons , 1973, The Journal of physiology.

[27]  D. Richards,et al.  Calcium ion-dependent p-nitrophenyl phosphate phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes. , 1973, The Biochemical journal.

[28]  H. Meves,et al.  Calcium inward currents in internally perfused giant axons , 1973, The Journal of physiology.

[29]  R. Dipolo Calcium Efflux from Internally Dialyzed Squid Giant Axons , 1973, The Journal of general physiology.

[30]  P. De Weer,et al.  Myokinase equilibrium. An enzymatic method for the determination of stability constants of magnesium complexes with adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate in media of high ionic strength. , 1973, The Journal of biological chemistry.

[31]  A. Giuditta,et al.  IDENTIFICATION OF A CALCIUM‐BINDING, BRAIN SPECIFIC PROTEIN IN THE AXOPLASM OF SQUID GIANT AXONS , 1973, Journal of neurochemistry.

[32]  E. B. Ridgway,et al.  Calcium entry in response to maintained depolarization of squid axons , 1973, The Journal of physiology.

[33]  M. Blaustein,et al.  Calcium efflux from internally dialyzed squid axons: the influence of external and internal cations. , 1974, Journal of supramolecular structure.

[34]  A. Scarpa Indicators of free magnesium in biological systems. , 1974, Biochemistry.

[35]  R. Dipolo Effect of ATP on the Calcium Efflux in Dialyzed Squid Giant Axons , 1974, The Journal of general physiology.

[36]  M. Blaustein The interrelationship between sodium and calcium fluxes across cell membranes. , 1974, Reviews of physiology, biochemistry and pharmacology.

[37]  A. Scarpa,et al.  Ionized magnesium concentration in axoplasm of dialyzed squid axons , 1975, FEBS letters.

[38]  E. Rojas,et al.  Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control. , 1975, The Journal of physiology.

[39]  P. S. Harris,et al.  Unique form of filamentous carbon , 1975, Nature.

[40]  H. Glitsch,et al.  Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  L. Mullins,et al.  Calcium and EDTA fluxes in dialyzed squid axons , 1975, The Journal of general physiology.

[42]  L. Mullins,et al.  Sensitivity of calcium efflux from squid axons to changes in membrane potential , 1975, The Journal of general physiology.

[43]  P. Mcnaughton,et al.  Kinetics and energetics of calcium efflux from intact squid giant axons. , 1976, The Journal of physiology.

[44]  E. Sigel,et al.  THE REGULATION OF INTRACELLULAR CALCIUM BY MITOCHONDRIA * , 1978, Annals of the New York Academy of Sciences.

[45]  T. Tiffert,et al.  Ionized calcium concentrations in squid axons , 1976, The Journal of general physiology.

[46]  P. Weer Axoplasmic free magnesium levels and magnesium extrusion from squid giant axons. , 1976 .

[47]  Baker Pf,et al.  Selective inhibition of the Ca-dependent Na efflux from intact squid axons by a fall in intracellular pH [proceedings]. , 1977 .

[48]  R. Dipolo Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons , 1977, The Journal of general physiology.

[49]  Baker Pf,et al.  Porous cellulose acetate tubing provides a suitable support for isolated protoplasm during studies under controlled conditions [proceedings]. , 1977 .

[50]  L. Mullins,et al.  A mechanism for Na/Ca transport , 1977, The Journal of general physiology.

[51]  M. Blaustein,et al.  Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. , 1977, Biophysical journal.

[52]  R. Abercrombie,et al.  Magnesium efflux in dialyzed squid axons , 1977, The Journal of general physiology.

[53]  R. Meech,et al.  The effect of calcium injection on the intracellular sodium and pH of snail neurones. , 1977, The Journal of physiology.

[54]  S. Verjovski-Almeida,et al.  PH-induced changes in the reactions controlled by the low- and high-affinity Ca2+-binding sites in sarcoplasmic reticulum. , 1977, Biochemistry.

[55]  T. Tiffert,et al.  Intracellular calcium buffering capacity in isolated squid axons , 1977, The Journal of general physiology.

[56]  P. Duggan Caclium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions. , 1977, The Journal of biological chemistry.

[57]  P. F. Baker,et al.  Influence of carbon dioxide on level of ionised calcium in squid axons , 1978, Nature.

[58]  J. Requena Calcium efflux from squid axons under constant sodium electrochemical gradient , 1978, The Journal of general physiology.

[59]  T. Tiffert,et al.  Mitochondria and other calcium buffers of squid axon studied in situ , 1978, The Journal of general physiology.

[60]  P. F. Baker,et al.  Uptake and binding of calcium by axoplasm isolated from giant axons of Loligo and Myxicola. , 1978, The Journal of physiology.

[61]  P. F. Baker,et al.  THE REGULATION OF INTRACELLULAR CALCIUM IN GIANT AXONS OF LOLIGO AND MYXICOLA , 1978, Annals of the New York Academy of Sciences.

[62]  T. Reese,et al.  Endoplasmic reticulum sequesters calcium in the squid giant axon. , 1978, Science.

[63]  P. Mcnaughton,et al.  The influence of extracellular calcium binding on the calcium efflux from squid axons. , 1978, The Journal of physiology.

[64]  R. Dipolo Ca pump driven by ATP in squid axons , 1978, Nature.

[65]  F. Brinley Calcium buffering in squid axons. , 1978, Annual review of biophysics and bioengineering.

[66]  I. Glynn,et al.  Commercial ATP containing traces of vanadate alters the response of (Na+ + K+)ATPase to external potassium , 1978, Nature.

[67]  J. Reeves,et al.  Sodium-calcium ion exchange in cardiac membrane vesicles. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. F. Baker,et al.  The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[69]  L. Mullins,et al.  Calcium measurement in the periphery of an axon , 1979, The Journal of general physiology.

[70]  R. Dipolo Calcium influx in internally dialyzed squid giant axons , 1979, The Journal of general physiology.

[71]  R. Dipolo,et al.  Vanadate inhibits uncoupled Ca efflux but not Na–Ca exchange in squid axons , 1979, Nature.

[72]  R. Dipolo,et al.  Physiological role of ATP-driven calcium pump in squid axon , 1979, Nature.

[73]  L. Mullins,et al.  Calcium movement in nerve fibres , 1979, Quarterly Reviews of Biophysics.

[74]  R. Dipolo,et al.  Mechanisms of calcium transport in the giant axon of the squid and their physiological role , 1980 .

[75]  K. Kürzinger,et al.  Uptake and energy-dependent extrusion of calcium in neural cells in culture. , 1980, European journal of biochemistry.

[76]  A. F. Rega,et al.  Vanadate inhibition of the Ca2+-ATPase from human red cell membranes. , 1980, Biochimica et biophysica acta.

[77]  P. Hudgins,et al.  Inhibition of red cell Ca2+-ATPase by vanadate. , 1980, Biochimica et biophysica acta.

[78]  P. Sulakhe,et al.  Passive and active calcium fluxes across plasma membranes. , 1980, Progress in biophysics and molecular biology.

[79]  P. Caroni,et al.  An ATP-dependent Ca2+-pumping system in dog heart sarcolemma , 1980, Nature.

[80]  I. Inoue Separation of the action potential into a Na-channel spike and a K- channel spike by tetrodotoxin and by tetraethylammonium ion in squid giant axons internally perfused with dilute Na-salt solutions , 1980, The Journal of general physiology.

[81]  P. F. Baker,et al.  Influence of vanadate on calcium fluxes and net movement of calcium in intact squid axons , 1981 .

[82]  R. Llinás,et al.  Presynaptic calcium currents in squid giant synapse. , 1981, Biophysical journal.

[83]  D. Nicholls,et al.  Ca2+ transport by intact synaptosomes: the voltage-dependent Ca2+ channel and a re-evaluation of the role of sodium/calcium exchange. , 2005, European journal of biochemistry.

[84]  R. Dipolo,et al.  An ATP‐dependent sodium‐sodium exchange in strophanthidin poisoned dialysed squid giant axons. , 1981, The Journal of physiology.

[85]  L. Mullins,et al.  The "late" Ca channel in squid axons , 1981, The Journal of general physiology.

[86]  G. Schellenberg,et al.  Sodium-dependent and calcium-dependent calcium transport by rat brain microsomes. , 1981, Biochimica et biophysica acta.

[87]  R. Dipolo,et al.  The effects of vanadate on calcium transport in dialyzed squid axons. Sidedness of vanadate-cation interactions. , 1981, Biochimica et biophysica acta.

[88]  D. Gill,et al.  Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes. , 1981, The Journal of biological chemistry.

[89]  R. Dipolo,et al.  The effect of pH on Ca2+ extrusion mechanisms in dialyzed squid axons. , 1982, Biochimica et biophysica acta.

[90]  E. Carafoli Membrane transport of calcium , 1982 .

[91]  K. Åkerman,et al.  Mitochondrial calcium transport. , 1982, Biochimica et biophysica acta.

[92]  D. Bers A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. , 1982, The American journal of physiology.

[93]  P. F. Baker,et al.  Metabolism and transport of strontium in giant axons of Loligo. , 1982, The Journal of physiology.

[94]  E. Sigel,et al.  The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+-H+ exchange in reconstituted liposomal systems. , 1982, The Journal of biological chemistry.

[95]  R. Dipolo,et al.  Ca entry at rest and during prolonged depolarization in dialyzed squid axons. , 1982, Cell calcium.

[96]  R. Dipolo,et al.  Measurements of intracellular ionized calcium in squid giant axons using calcium-selective electrodes. , 1983, Biochimica et biophysica acta.

[97]  F. Bezanilla,et al.  Voltage-dependent calcium channel in the squid axon. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[98]  R. Dipolo,et al.  The calcium pump and sodium-calcium exchange in squid axons. , 1983, Annual review of physiology.

[99]  R. Dipolo,et al.  Partial purification and characterization of the (Ca2+ + Mg2+)-ATPase from squid optic nerve plasma membrane. , 1984, Biochimica et biophysica acta.