The Falkner–Skan Wedge Flows of Power-Law Fluids Embedded in a Porous Medium

The non-Darcy flow characteristics of power-law non-Newtonian fluids past a wedge embedded in a porous medium have been studied. The governing equations are converted to a system of first-order ordinary differential equations by means of a local similarity transformation and have been solved numerically, for a number of parameter combinations of wedge angle parameter m, power-law index of the non-Newtonian fluids n, first-order resistance A and second-order resistance B, using a fourth-order Runge–Kutta integration scheme with the Newton–Raphson shooting method. Velocity and shear stress at the body surface are presented for a range of the above parameters. These results are also compared with the corresponding flow problems for a Newtonian fluid. Numerical results show that for the case of the constant wedge angle and material parameter A, the local skin friction coefficient is lower for a dilatant fluid as compared with the pseudo-plastic or Newtonian fluids.