Detecting lines and building intersection correspondences by computing edge oriented histogram on multi-sensor images

Abstract This paper proposes an approach to establishing correspondences for line intersections on multi-sensor images containing lines. Keypoints have been widely applied in a variety of computer vision fields. On multi-sensor images the number of keypoints may be much smaller than on single-sensor images due to the lack of texture. In addition, the multimodality often causes the incorrect assignment of main orientation to keypoints. Observing this, this paper proposes extracting line intersections as keypoints and utilizing one line as the main orientation to compute edge oriented histogram (EOH) descriptor. For EOH descriptor, gradient orientation is employed to compute the filter responses. Experimental results show that the proposed method can build more reliable keypoint matchings on challenging image pairs such as visible image and middle/long-wave infrared images.

[1]  Amin Sedaghat,et al.  Uniform Robust Scale-Invariant Feature Matching for Optical Remote Sensing Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[3]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[4]  Jie Tian,et al.  A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration , 2010, IEEE Transactions on Biomedical Engineering.

[5]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[6]  Guijin Wang,et al.  Topology based affine invariant descriptor for MSERs , 2010, 2010 IEEE International Conference on Image Processing.

[7]  Yuichi Yoshida,et al.  CARD: Compact And Real-time Descriptors , 2011, 2011 International Conference on Computer Vision.

[8]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[10]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[11]  Julie Delon,et al.  SAR-SIFT: A SIFT-Like Algorithm for SAR Images , 2015, IEEE Trans. Geosci. Remote. Sens..

[12]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[13]  Anil K. Jain,et al.  Robust Keypoint Detection Using Higher-Order Scale Space Derivatives: Application to Image Retrieval , 2014, IEEE Signal Processing Letters.

[14]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[15]  Angel Domingo Sappa,et al.  Multispectral Image Feature Points , 2012, Sensors.

[16]  Shuncong Zhong,et al.  Sine-modulated wavelength-independent full-range complex spectral optical coherence tomography with an ultra-broadband light source , 2015 .

[17]  Guojun Lu,et al.  Improved Symmetric-SIFT for Multi-modal Image Registration , 2011, 2011 International Conference on Digital Image Computing: Techniques and Applications.

[18]  Yong Li,et al.  Detection of junction in images , 2007, Electronic Imaging.

[19]  Sajid Saleem,et al.  A Robust SIFT Descriptor for Multispectral Images , 2014, IEEE Signal Processing Letters.

[20]  Yong Zhu,et al.  Improved river flow and random sample consensus for curve lane detection , 2015 .

[21]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[22]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[23]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[25]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[26]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[28]  Zhanyi Hu,et al.  MSLD: A robust descriptor for line matching , 2009, Pattern Recognit..