Construction of warped time-frequency representations on nonuniform frequency scales, Part II: Integral transforms, function spaces, atomic decompositions and Banach frames

We present a novel family of continuous linear time-frequency transforms adapted to a multitude of (nonlinear) frequency scales. Similar to classical time-frequency or time-scale representations, the representation coefficients are obtained as inner products with the elements of a continuously indexed family of time-frequency atoms. These atoms are obtained from a single prototype function, by means of modulation, translation and warping. By warping we refer to the process of nonlinear evaluation according to a bijective, increasing function, the warping function. Besides showing that the resulting integral transforms fulfill certain basic, but essential properties, such as continuity and invertibility, we will show that a large subclass of warping functions gives rise to families of generalized coorbit spaces, i.e. Banach spaces of functions whose representations possess a certain localization. Furthermore, we obtain sufficient conditions for subsampled warped time-frequency systems to form atomic decompositions and Banach frames. To this end, we extend results previously presented by Fornasier and Rauhut to a larger class of function systems via a simple, but crucial modification. The proposed method allows for great flexibility, but by choosing particular warping functions we also recover classical time-frequency representations, e.g. $F(t) = ct$ provides the short-time Fourier transform and $F(t)=\log_a(t)$ provides wavelet transforms. This is illustrated by a number of examples provided in the manuscript.

[1]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[2]  Say Song Goh,et al.  From dual pairs of Gabor frames to dual pairs of wavelet frames and vice versa , 2014 .

[3]  Syed Twareque Ali,et al.  Continuous Frames in Hilbert Space , 1993 .

[4]  H. Feichtinger,et al.  A unified approach to atomic decompositions via integrable group representations , 1988 .

[5]  Pierre Vandergheynst,et al.  Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames , 2013, IEEE Transactions on Signal Processing.

[6]  Thibaud Necciari,et al.  The ERBlet transform: An auditory-based time-frequency representation with perfect reconstruction , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Richard G. Baraniuk Warped perspectives in time-frequency analysis , 1994, Proceedings of IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis.

[8]  Massimo Fornasier,et al.  Banach frames for α-modulation spaces , 2007 .

[9]  H. Triebel Theory of Function Spaces III , 2008 .

[10]  Ronald R. Coifman,et al.  Signal processing and compression with wavelet packets , 1994 .

[11]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[12]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[13]  P. Balázs,et al.  The continuous nonstationary Gabor transform on LCA groups with applications to representations of the affine Weyl-Heisenberg group , 2014, 1407.6830.

[14]  G. Folland Harmonic analysis in phase space , 1989 .

[15]  H. Feichtinger,et al.  Irregular sampling theorems and series expansions of band-limited functions , 1992 .

[16]  S. Obeidat,et al.  A Schur test for weighted mixed-norm spaces , 2005 .

[17]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family , 2002 .

[18]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[19]  K. Gröchenig Weight Functions in Time-Frequency Analysis , 2006 .

[20]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[21]  H. Feichtinger,et al.  Banach Gelfand Triples for Gabor Analysis , 2008 .

[22]  Amiel Feinstein,et al.  Applications of harmonic analysis , 1964 .

[23]  M. Holschneider,et al.  An Interpolation Family between Gabor and Wavelet Transformations , 2003 .

[24]  Gabriele Steidl,et al.  Shearlet coorbit spaces and associated Banach frames , 2009 .

[25]  A. Rahimi,et al.  CONTINUOUS FRAMES IN HILBERT SPACES , 2006 .

[26]  Gianpaolo Evangelista,et al.  Discrete frequency warped wavelets: theory and applications , 1998, IEEE Trans. Signal Process..

[27]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[28]  Gianpaolo Evangelista,et al.  Arbitrary Phase Vocoders by means of Warping , 2013 .

[29]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[30]  M. Fornasier,et al.  Continuous Frames, Function Spaces, and the Discretization Problem , 2004, math/0410571.

[31]  A. Oppenheim,et al.  Unequal bandwidth spectral analysis using digital frequency warping , 1974 .

[32]  V. Havin The Uncertainty Principle in Harmonic Analysis , 1994 .

[33]  Nicki Holighaus,et al.  Theory, implementation and applications of nonstationary Gabor frames , 2011, J. Comput. Appl. Math..

[34]  Mads S. Jakobsen,et al.  Reproducing formulas for generalized translation invariant systems on locally compact abelian groups , 2014, 1405.4948.

[35]  A. Ron,et al.  Generalized Shift-Invariant Systems , 2005 .

[36]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[37]  Franz Hlawatsch,et al.  Modulation and warping operators in joint signal analysis , 1998, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380).

[38]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family, II , 2002 .

[39]  Hans G. Feichtinger,et al.  Advances in Gabor Analysis , 2012 .

[40]  Lena Schwartz,et al.  Theory Of Function Spaces Ii , 2016 .

[41]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[42]  Brian R Glasberg,et al.  Derivation of auditory filter shapes from notched-noise data , 1990, Hearing Research.

[43]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[44]  E. Owens,et al.  An Introduction to the Psychology of Hearing , 1997 .

[45]  Hans G. Feichtinger,et al.  Flexible Gabor-wavelet atomic decompositions for L2-Sobolev spaces , 2006 .

[46]  N. Holighaus Structure of nonstationary Gabor frames and their dual systems , 2013, 1306.5037.

[47]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[48]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[49]  Michael Martin Nieto,et al.  Coherent States , 2009, Compendium of Quantum Physics.

[50]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[51]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions. Part II , 1989 .

[52]  T. Strohmer,et al.  Gabor Analysis and Algorithms , 2012 .

[53]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[54]  Charles Fefferman,et al.  Wave packets and fourier integral operators , 1978 .

[55]  Dennis Gabor,et al.  Theory of communication , 1946 .

[56]  Jean-Pierre Antoine,et al.  Quantum mechanics beyond hilbert space , 1998 .

[57]  M. Fornasier,et al.  Generalized coorbit theory, Banach frames, and the relation to α‐modulation spaces , 2008 .

[58]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  P. Balázs,et al.  Discretization in generalized coorbit spaces: extensions, annotations and errata for "Continuous Frames, Function Spaces and the Discretization Problem" by M. Fornasier and H. Rauhut , 2017, 1702.06485.

[60]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[61]  Monika Dörfler,et al.  Nonstationary Gabor frames - Existence and construction , 2011, Int. J. Wavelets Multiresolution Inf. Process..

[62]  Douglas L. Jones,et al.  Warped wavelet bases: unitary equivalence and signal processing , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[63]  Monika Dörfler,et al.  Nonstationary Gabor frames - approximately dual frames and reconstruction errors , 2013, Advances in Computational Mathematics.

[64]  Bruno Torrésani,et al.  Time-Frequency and Time-Scale Analysis , 1999 .